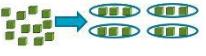


Progression in Calculations


Year 1 – Year 6*

**Progression guidance is not provided for EYFS / Reception since the focus should be on the understanding of early number concepts and number sense through the use of concrete manipulatives, as exemplified in the programme of study.*

Addition and subtraction structures

<p>combination combining two or more discrete quantities</p> <p>Hakan has four books, Sally has three books. How many books do they have altogether?</p> <p></p> <p>$4 + 3 = 7$</p> <p>"The parts are four and three. What is my whole?"</p>	<p>partitioning splitting one quantity into two or more sub-quantities</p> <p>There are seven socks in the drier. Three of the socks belong to Ceri. The rest belong to Alexi. How many socks belong to Alexi?</p> <p></p> <p>$7 - 3 = 4$</p> <p>"My whole is seven. One of my parts is three. What is the value of the other part?"</p>
<p>augmentation adding to an existing quantity</p> <p>12 people were on the bus. Three more people got on at the bus stop. How many people are on the bus now?</p> <p></p> <p>$12 + 3 = 15$</p> <p>"My first part is 12. My second part is three. What is my whole?"</p>	<p>reduction reducing the value of one quantity (the only form of subtraction that is actually 'taking away')</p> <p>Kieran had six plates in his cupboard. He took two plates out to use for dinner. How many plates were left in the cupboard?</p> <p></p> <p>$6 - 2 = 4$</p> <p>"My whole is six. One of my parts is two. What is the value of the part that is left?"</p>
<p>comparative addition comparison of equivalent situations requiring addition</p> <p>Ella has six marbles in her bag and three marbles in her pocket. How many marbles will Ali need to bring from home to have the same number as Ella?</p> <p></p> <p>$6 + 3 = 9$</p> <p>"My parts are six and three. What is my whole?"</p>	<p>comparative difference comparison of two values, assigning a numerical value to the difference between them</p> <p>I have saved £4 towards the cost of a new football. If the football costs £5, how much more do I need to save?</p> <p></p> <p>$5 - 4 = 1$</p> <p>"The whole is five. One part is four. What is the value of the other part?"</p>

Multiplication and division structures

<p>repeated addition groups (sets) of equal value are combined or repeatedly added</p> <p>There are four packs of pencils. Each contains five pencils. How many pencils are there?</p> <p></p> <p>$5 + 5 + 5 + 5 = 20$ $5 \times 4 = 20$</p> <p>"There are four equal parts. Each part has a value of five. What is the value of the whole?"</p>	<p>repeated subtraction (grouping) groups (sets) of equal value are partitioned from the whole or repeatedly subtracted</p> <p>There are 12 counters. If each child needs three counters to play the game, how many children can play?</p> <p></p> <p>$12 \div 3 = 4$</p> <p>"The whole is twelve. The value of each equal part is three. How many equal parts are there?"</p>
--	---

correspondence (Cartesian products)

calculating the number of unique combinations that can be created from two (or more) sets

Robin has three different hats and four different tops. How many different outfits can he create, that combine one hat and one top?

Part-whole language is not appropriate here.

sharing (into equal groups)

the whole is shared into a known number (must be a positive integer) of equal groups (sets)

Share twelve counters equally between three children. How many counters does each child get?

$$12 \div 3 = 4$$

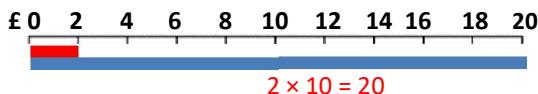
"The whole is twelve and needs to be shared into three equal parts. What is the value of each part?"

arrays / area model

Although the part-whole understanding in arrays is similar to the repeated addition and subtraction contexts, arrays of actual objects appear in real-life situations and word problems and pupils should be familiar with them. This early understanding also underpins that of the area model of multiplication.

In Mr. Slade's classroom, pupils sit in five rows of six children. How many children are in the class?

"There are five equal parts and the value of each part is six. What is the whole?"


$$6 \times 5 = 30$$

There are thirty children in Mr Slade's class. They sit in rows of six. How many rows are there? "The whole is thirty and each equal part has a value of six. How many parts are there?" $30 \div 6 = 5$

scaling up ('times greater')

the original value is increased by a given scale factor

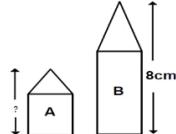
Rita receives £2 pocket money every week. Sim earns ten times as much money for her paper round. How much money does Sim earn?

Using part-whole language for contexts involving the scaling of values, could lead to misconceptions, since the value of the original whole is increased or decreased by a scale factor to calculate the value of a separate whole. Pupils should be encouraged to notice that e.g. a £20 note is not made up of ten £2 coins but merely has an equal value.

scaling up ('times as many')

the value of the original quantity is increased by a given scale factor

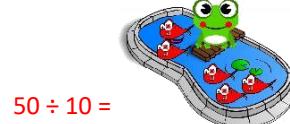
$$1000 \times 5 = 5000$$


The Royal Hall can hold five times as many people as the Festival Hall. If the Festival Hall holds 1000 people, how many does the Royal Hall hold?

Using part-whole language for contexts involving the scaling of quantities, could lead to misconceptions, since the larger whole does not consist of multiple replicas of the smaller whole. Pupils should be encouraged to notice that e.g. a crowd of 5000 people is not made up of five groups of the same 1000 people but merely has an equal magnitude.

scaling down ('times smaller')

the original value is reduced by a given scale factor


$$8 \div 2 = 4$$

The house in my model village needs to be half the height of the church. If the church is 8 cm tall, how tall does the house need to be?

scaling down ('times fewer')

the value of the original quantity is decreased by a given scale factor

$$50 \div 10 =$$

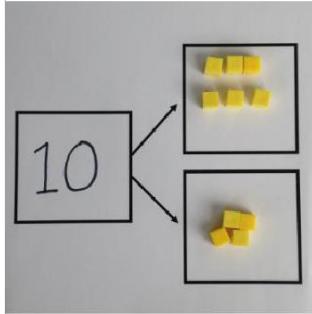
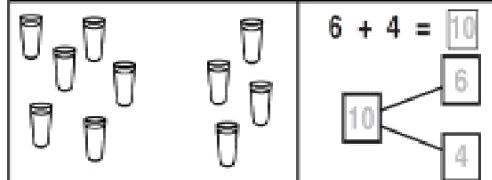
Anouska's garden pond has ten times fewer frogs than fish. If there are fifty fish, how many frogs are there?

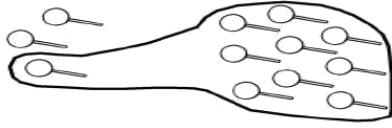
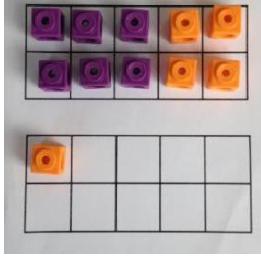
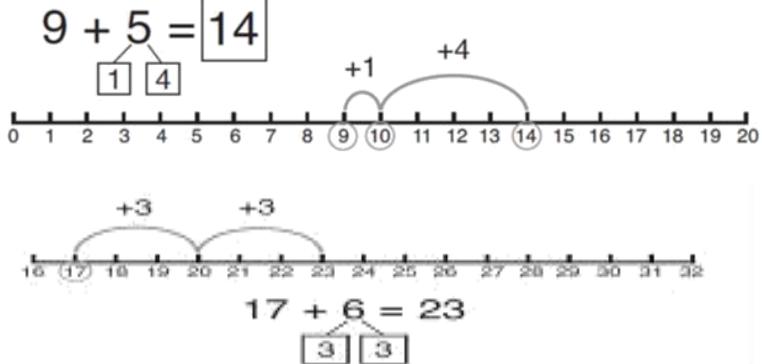
Progression in calculations

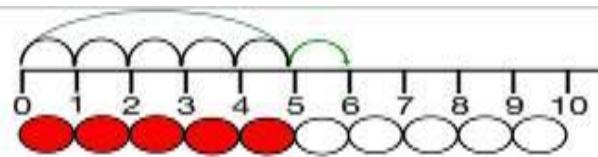
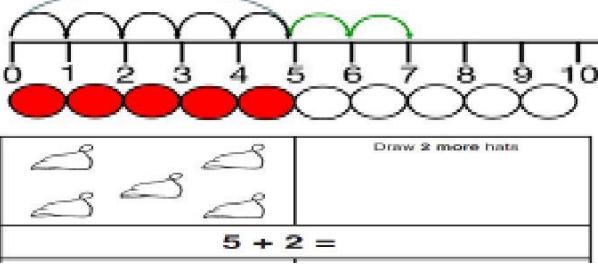
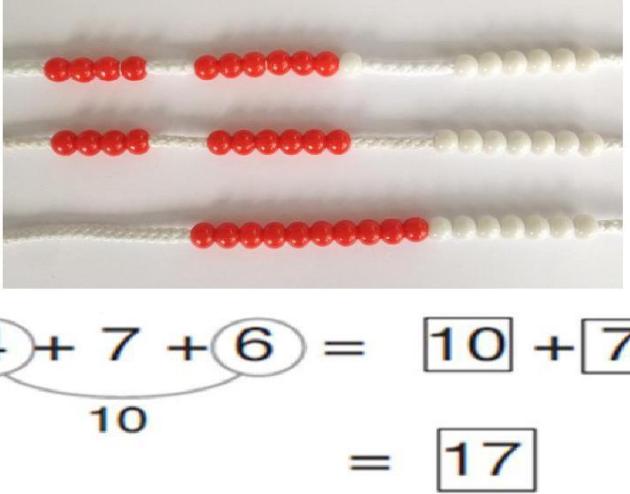
Year 1

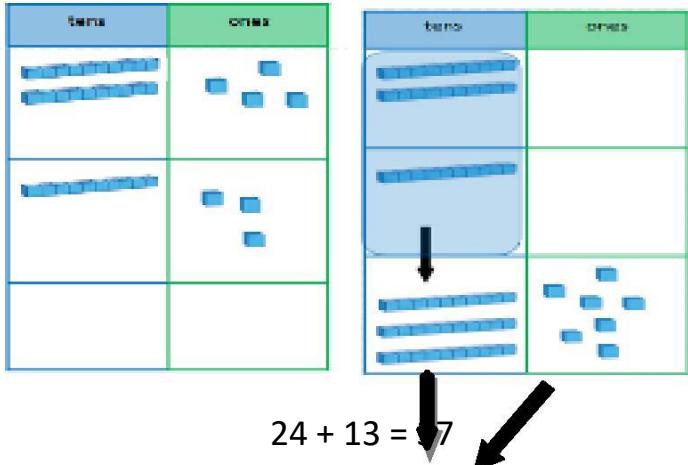
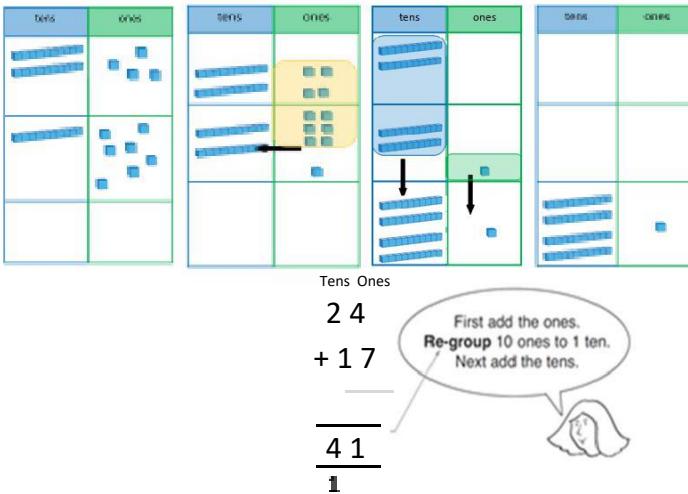
National curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:




- Add and subtract one-digit and two-digit numbers to 100, including zero (N.B. Year 1 N.C. objective is to do this with numbers to 20).
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, 2 two-digit numbers; add 3 one-digit numbers (Year 2).
- Represent and use number bonds and related subtraction facts within 20.
- Given a number, identify 1 more and 1 less.
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot (Year 2).
- Recognise the inverse relationship between addition and subtraction and use this to solve missing number problems (Year 2).




The following objectives should be planned for lessons where new strategies are being introduced and developed:




- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equal (=) signs.
- Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems, such as $7 = \square - 9$.
- Solve problems with addition and subtraction:
 - Using concrete objects and pictorial representations, including those involving numbers, quantities and measures
 - Applying their increasing knowledge of mental methods

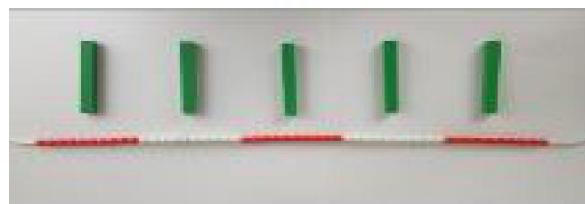


Teachers should refer to the definitions and guidance on the [structures for addition and subtraction](#) to provide a range of appropriate real-life contexts for calculations.

Y1 Addition

Strategy & guidance	CPA
Count all <i>Joining two groups and then recounting all objects using one-to-one correspondence</i>	$3 + 4 = 7$
Counting on <i>As a strategy, this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater number is more efficient.</i>	$8 + 1 = 9$ $8 + 1 = 9$ $15 = 12 + 3$
Part-part-whole <i>Teach both addition and subtraction alongside each other, as pupils will use this model to identify the inverse relationship between them.</i> <i>This model begins to develop the understanding of the commutativity of addition, as pupils become aware that the parts will make the whole in any order.</i>	 $10 = 6 + 4$ $10 - 6 = 4$ $10 - 4 = 6$ $10 = 4 + 6$

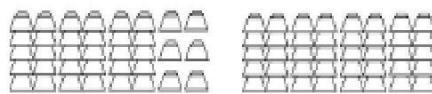
<p>Regrouping ten ones to make ten</p> <p><i>This is an essential skill that will support column addition later</i> $3 + 9 = 12$ on.</p>	<p>$3 + 9 =$</p>
<p>'Make ten' strategy</p> <p><i>Pupils should be encouraged to start at the greater number and partition the smaller number to make ten.</i></p> <p><i>The colours of the beads on the bead string make it clear how many more need to be added to make ten.</i></p> <p><i>Also, the empty spaces on the ten frame make it clear how many more are needed to make ten.</i></p>	<p>$6 + 5 = 11$</p> <p>$4 + 9 = 13$</p> <p>$9 + 5 = 14$</p>

<p>Adding 1, 2, 3 more</p> <p>Here the emphasis should be on the language rather than the strategy. As pupils are using the beadstring, ensure that they are explaining using language such as;</p> <p>‘1 more than 5 is equal to 6.’</p> <p>‘2 more than 5 is equal to 7.’</p> <p>‘8 is 3 more than 5.’</p> <p>Over time, pupils should be encouraged to rely more on their number bonds knowledge than on counting strategies.</p>	<p>1 more than 5 $5 + 1 = 6$</p> <p>2 more than 5 $5 + 2 = 7$</p> <p>Draw 2 more hats</p>
<p>Adding three single digit numbers (make ten first)</p> <p>Pupils may need to try different combinations before they find the two numbers that make 10.</p> <p>The first bead string shows 4, 7 and 6. The colours of the bead string show that it makes more than ten.</p> <p>The second bead string shows 4, 6 and then 7.</p> <p>The final bead string shows how they have now been put together to find the total.</p>	$ \begin{aligned} 4 + 7 + 6 &= 10 + 7 \\ &= 17 \end{aligned} $

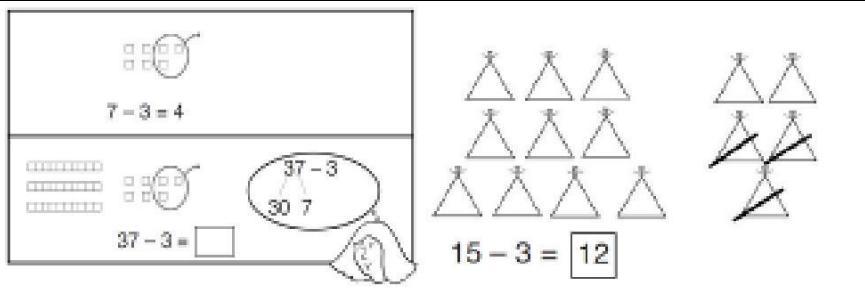
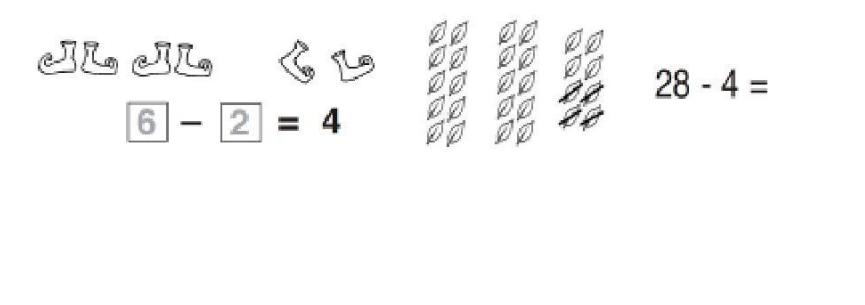
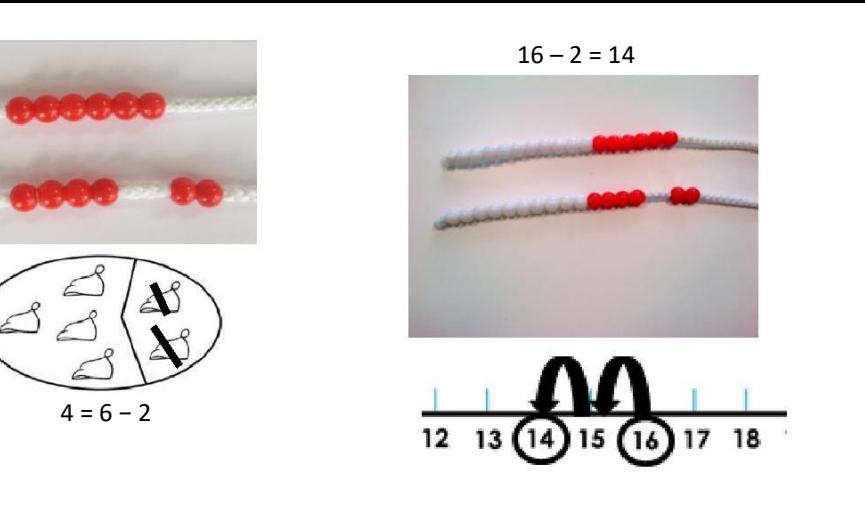

<p>Partitioning to add (no regrouping)</p> <p>Place value grids and Dienes blocks could be used as shown in the diagram before moving onto pictorial representations. Dienes blocks should always be available, as the main focus in Year 1 is the concept of place value rather than mastering the procedure.</p> <p>When not regrouping, partitioning is a mental strategy and does not need formal recording in columns. This representation prepares them for using column addition with formal recording.</p>	$24 + 13 = 37$
<p>Introducing column method for addition, regrouping only</p> <p>Dienes blocks and place value grids should be used as shown in the diagrams. Even when working pictorially, pupils should have access to Dienes blocks.</p>	$24 + 17$

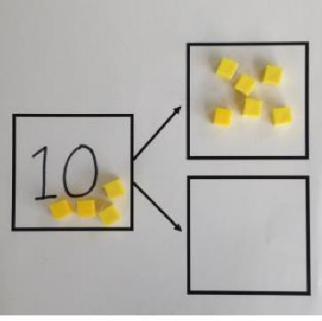
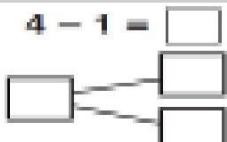
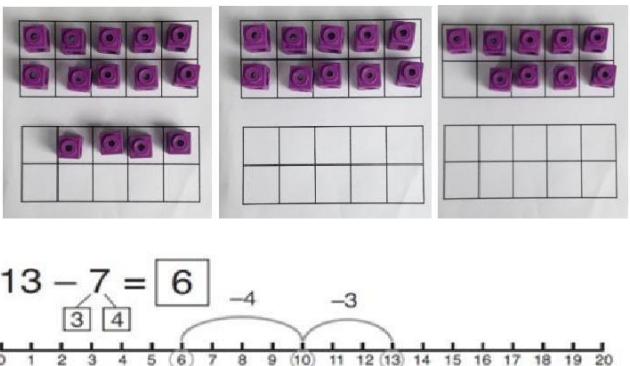
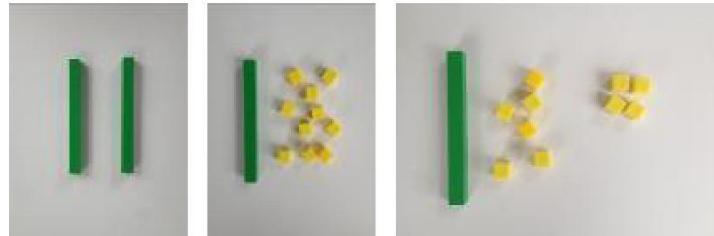
Adding multiples of ten

Using the vocabulary of 1 ten, 2 tens, 3 tens etc. **alongside** 10, 20, 30 is important, as pupils need to understand that it is a **ten** and not a one that is being added and they need to understand that a '2' digit in the tens column has a value of twenty.


It also emphasises the link to known number facts. E.g. '2 + 3 is equal to 5. So 2 tens + 3 tens is equal to 5 tens.

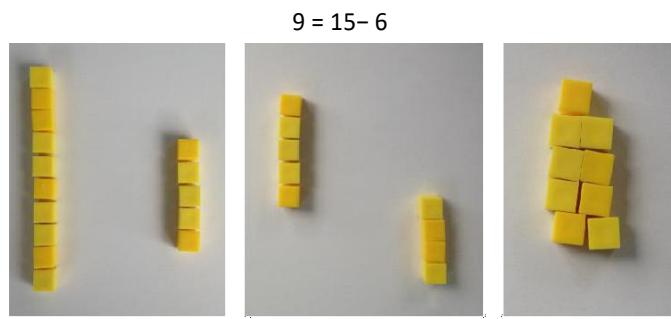
$$50 = 30 + 20$$




$$3 \text{ tens} + 5 \text{ tens} = \underline{\hspace{2cm}} \text{ tens}$$





$$30 + 50 = \underline{\hspace{2cm}}$$

$$36 + 40 = \boxed{\hspace{1cm}}$$

Y1 Subtraction


Strategy & guidance	CPA
<p>Taking away from the ones</p> <p>When this is first introduced, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-to-one correspondence so that pupils can take them away, progressing to representing the group of ten with a tens rod and ones with ones cubes.</p>	
<p>Counting back</p> <p>Subtracting 1, 2, or 3 by counting back</p> <p>Pupils should be encouraged to rely on number bonds knowledge as time goes on, rather than using counting back as their main strategy.</p>	

<p>Part-part-whole <i>Teach both addition and subtraction alongside each other, as the pupils will use this model to identify the link between them. Pupils start with ten cubes placed on the whole. They then remove what is being taken away from the whole and place it on one of the parts. The remaining cubes are the other part and also the answer. These can be moved into the second part space.</i></p>	$10 - 6 = 4$ <hr/> $4 - 1 = \boxed{}$
<p>Make ten strategy <i>To subtract a 1-digit number from a 2-digit number.</i></p> <p><i>Pupils identify how many need to be taken away to make ten first, partitioning the number being subtracted. Then they take away the rest to reach the answer.</i></p>	$14 - 5 = 9$ $13 - 7 = \boxed{6}$ $\begin{array}{cccccccccccccccccc} 0 & 1 & 2 & 3 & 4 & 5 & \textcircled{6} & 7 & 8 & 9 & \textcircled{10} & 11 & 12 & \textcircled{13} & 14 & 15 & 16 & 17 & 18 & 19 & 20 \end{array}$
<p>Regroup a ten into 10 ones <i>After the initial introduction, the Dienes blocks should be placed on a place value chart to support place value understanding. This will support pupils when they later use the column method.</i></p>	$20 - 4 =$

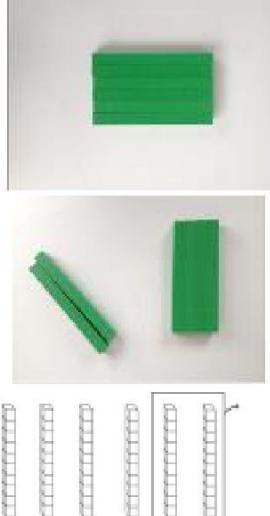
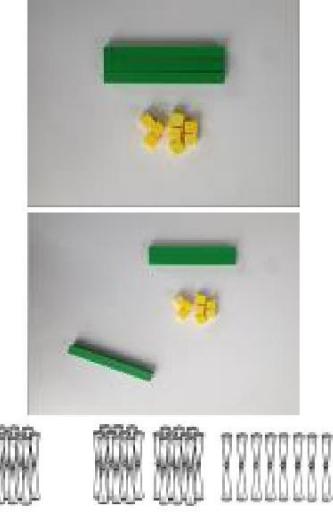
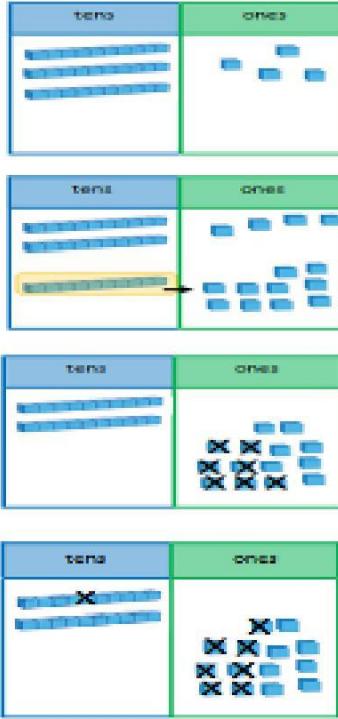
Taking away from the tens

Pupils should identify that they can also take away from the tens and get the same answer.

This reinforces their knowledge of number bonds to 10 and develops their application of number bonds for mental strategies.

$$16 - 8 = \boxed{8}$$

Partitioning to subtract without regrouping

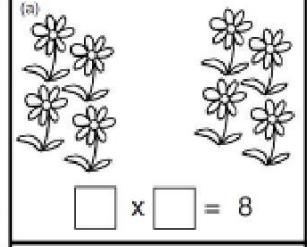
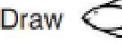



Dienes blocks on a place value chart (developing into using images on the chart) could be used, as when adding 2-digit numbers, reinforcing the main concept of place value for Year 1.

$$34 - 13 = 21$$

$$34 - 13 = 21$$

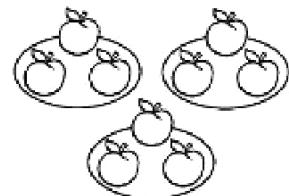
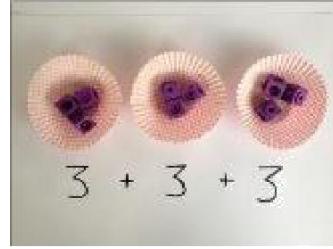
When not regrouping, partitioning is a mental strategy and does not need formal recording in columns. This representation prepares them for using column subtraction with formal recording.

<p>Subtracting multiples of ten <i>Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside 10, 20, 30 is important as pupils need to understand that it is a ten not a one that is being taken away.</i></p>	$40 = 60 - 20$ <p>$6 \text{ tens} - 2 \text{ tens} = \underline{\hspace{2cm}} \text{ tens}$ $60 - 20 = \underline{\hspace{2cm}}$</p> $38 - 10 = \square$
<p>Column method with regrouping <i>This example shows how pupils should work practically when being introduced to this method.</i> <i>There is no formal recording in columns in Year 1 but this practical work will prepare pupils for formal methods in Year 2.</i> <i>See additional guidance on unit pages to support with this method.</i></p>	$34 - 17 = 17$



National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.



Teachers should refer to definitions and guidance on the [structures for multiplication and division](#) to provide a range of appropriate real-life contexts for calculations.

Y1 Multiplication

Strategy & guidance	CPA
<p>Skip counting in multiples of 2, 5, 10 from zero</p> <p><i>The representation for the amount of groups supports pupils' understanding of the written equation. So two groups of 2 are 2, 4. Or five groups of 2 are 2, 4, 6, 8, 10.</i></p> <p><i>Count the groups as pupils are skip counting.</i></p> <p><i>Number lines can be used in the same way as the bead string.</i></p> <p><i>Pupils can use their fingers as they are skip counting.</i></p>	$4 \times 5 = 20$ $2 \times 4 = 8$
<p>Making equal groups and counting the total</p> <p><i>How this would be represented as an equation will vary. This could be 2×4 or 4×2. The importance should be placed on the vocabulary used alongside the equation. So this picture could represent 2 groups of 4 or 4 twice.</i></p>	<p>Draw to show $2 \times 3 = 6$</p>

Solve multiplications using repeated addition

$$3 \times 3 = 3 + 3 + 3$$

How many apples are there altogether?

$$3 + 3 + 3 = 9$$

Y1 Division

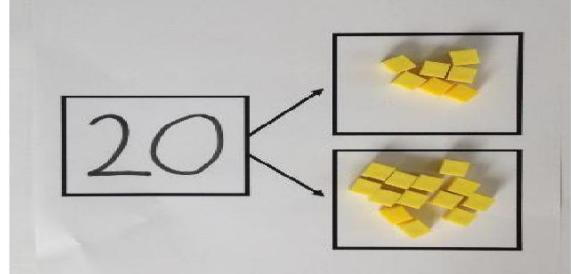
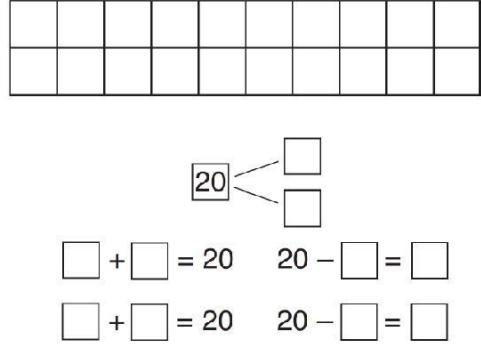
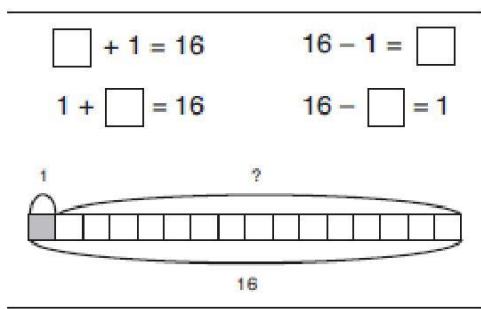
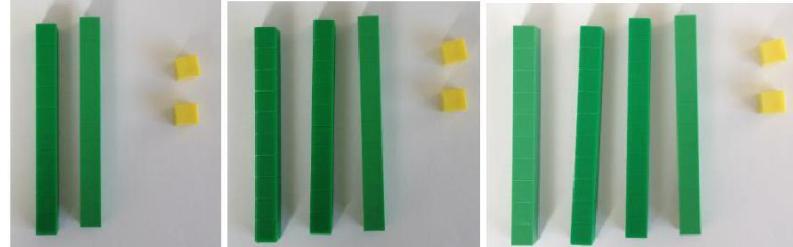
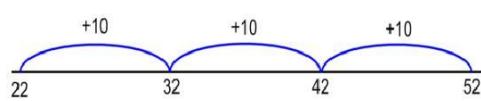
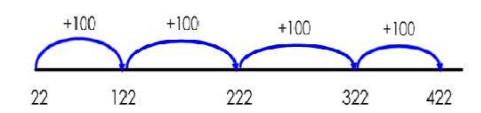
Strategy & guidance	CPA
<p>Sharing objects into groups</p> <p><i>Pupils should become familiar with division equations through working practically.</i></p> <p><i>The division symbol is not formally taught at this stage.</i></p>	$10 \div 2 = 5$ <div style="display: flex; justify-content: space-around;"> <div style="text-align: center;"> </div> <div style="text-align: center;"> </div> </div> <p>There are 10 sweets. Ring groups of 2.</p> <p>There are _____ groups of 2.</p> <p>Draw an equal number of apples for each basket.</p> <div style="display: flex; justify-content: space-around;"> <div style="text-align: center;"> </div> <div style="text-align: center;"> </div> </div> <p>There are five apples in each basket.</p>

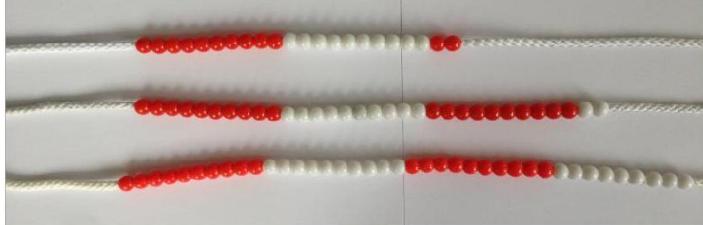
Progression in calculations

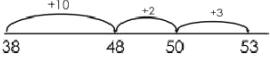
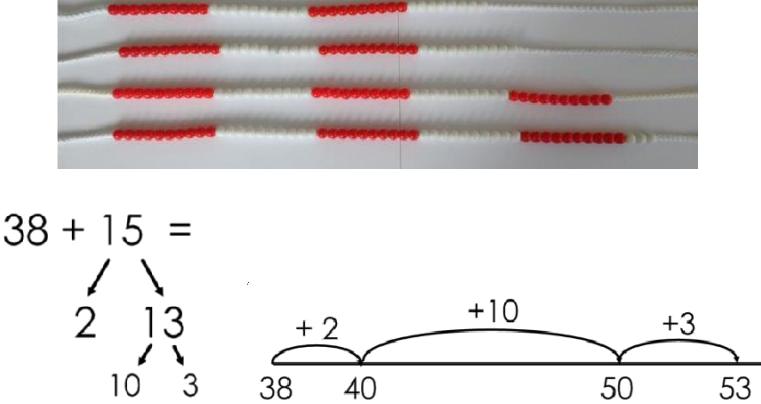
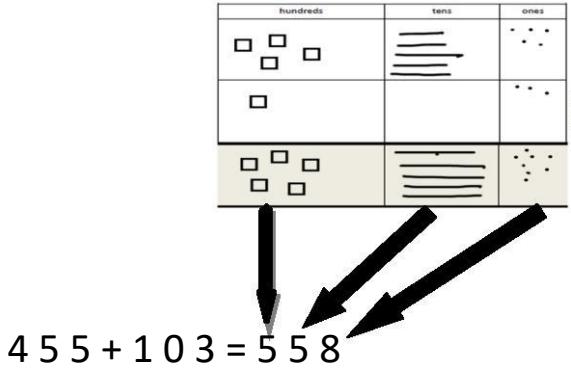
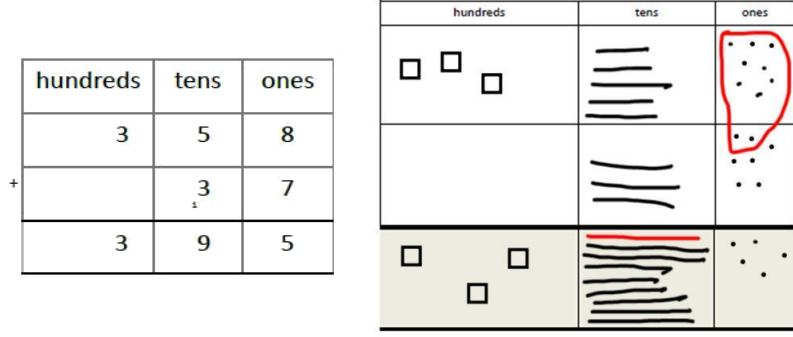
Year 2

National Curriculum objectives linked to addition and subtraction

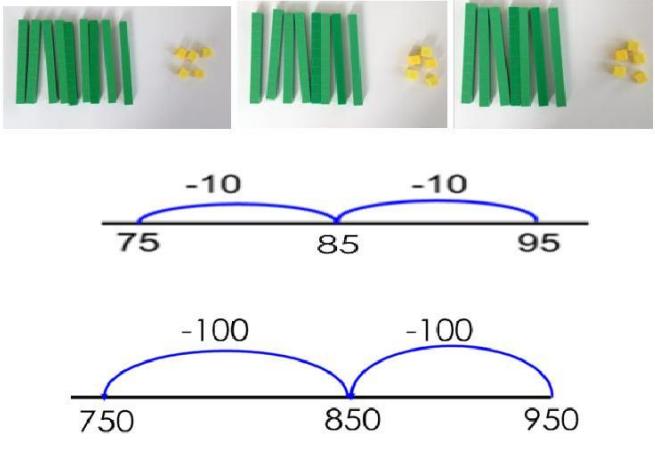
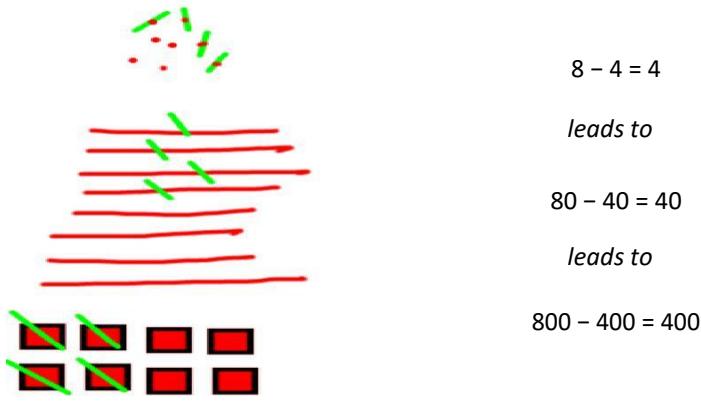
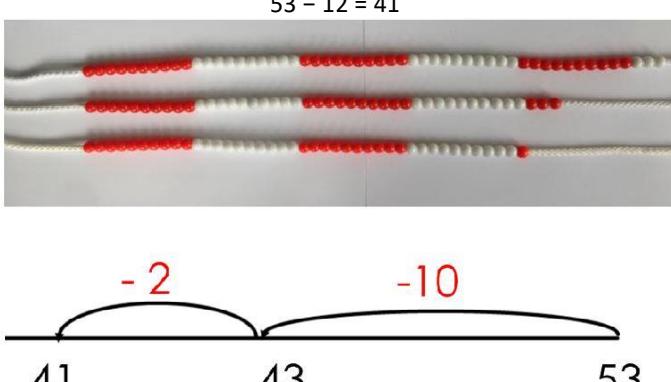
These objectives are explicitly covered through the strategies outlined in this document:

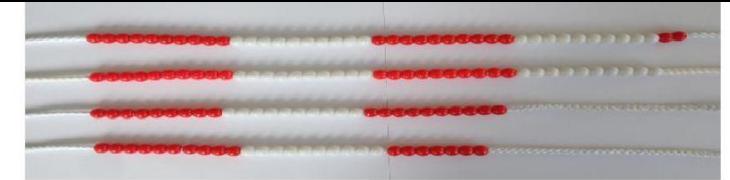






- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; 2 two-digit numbers; adding three one-digit numbers.
- Add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds (Year 3).
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Find 10 or 100 more or less than a given number (Year 3).
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot.
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction (Year 3).

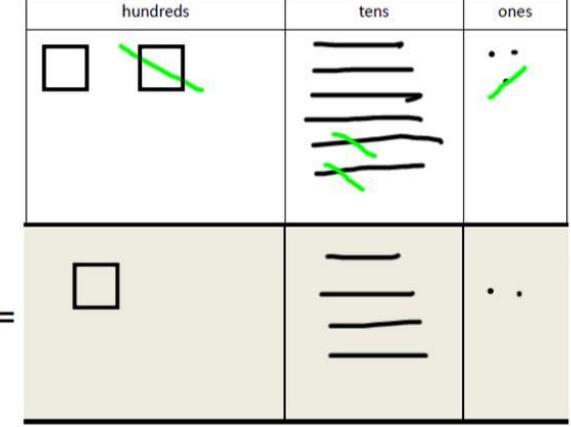
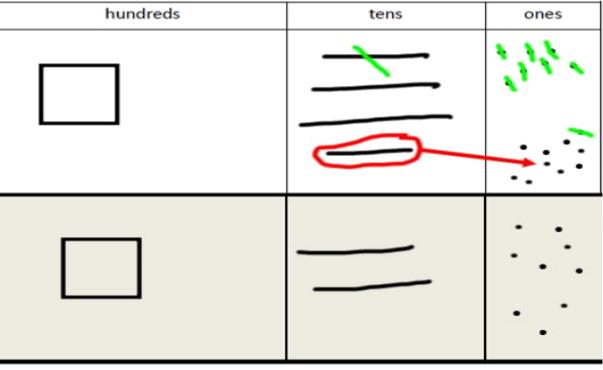

The following objectives should be planned for lessons where new strategies are being introduced and developed:





- Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; apply increasing knowledge of mental and written methods.
- Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction. (Year 3)

Teachers should refer to the definitions and guidance on the [structures for addition and subtraction](#) to provide a range of appropriate real-life contexts for calculations.




Y2 Addition


Strategy & guidance	CPA
<p>Part-part-whole</p> <p><i>Pupils explore the different ways of making 20. They can do this with all numbers using the same representations.</i></p> <p><i>This model develops knowledge of the inverse relationship between addition and subtraction and is used to find the answer to missing number problems.</i></p>	
<p>Counting on in tens and hundreds</p>	



Strategy & guidance	CPA
<p>Using known facts to create derived facts</p> <p><i>Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy.</i></p>	$\begin{array}{c} \cdot \cdot \\ \cdot \cdot \end{array} + \begin{array}{c} \cdot \cdot \\ \cdot \cdot \end{array} = \begin{array}{c} \cdot \cdot \\ \cdot \cdot \end{array}$ $3 + 4 = 7$ <p><i>leads to</i></p> $\begin{array}{c} \\ \end{array} + \begin{array}{c} \\ \end{array} = \begin{array}{c} \\ \end{array}$ $30 + 40 = 70$ <p><i>leads to</i></p> $\begin{array}{c} \square \square \\ \square \square \end{array} + \begin{array}{c} \square \square \\ \square \square \end{array} = \begin{array}{c} \square \square \\ \square \square \\ \square \end{array}$ $300 + 400 = 700$
<p>Partitioning one number, then adding tens and ones</p> <p><i>Pupils can choose themselves which of the numbers they wish to partition. Pupils will begin to see when this method is more efficient than adding tens and taking away the extra ones, as shown.</i></p>	$\begin{array}{c} +10 \\ +7 \\ \hline 22 & 32 & 39 \\ 22 + 17 = 39 \end{array}$
<p>Round and adjust (sometimes known as a compensating strategy)</p> <p><i>Pupils will develop a sense of efficiency with this method, beginning to see when rounding and adjusting is more efficient than adding tens and then ones.</i></p>	$\begin{array}{c} +20 \\ -3 \\ \hline 22 & 39 & 42 \\ 22 + 17 = 39 \end{array}$

Strategy & guidance	CPA
<p>Make ten strategy</p> <p><i>How pupils choose to apply this strategy is up to them; however, the focus should always be on efficiency.</i></p> <p><i>It relies on an understanding that numbers can be partitioned in different ways in order to easily make a multiple of ten.</i></p>	
<p>Partitioning to add without regrouping</p> <p><i>As in Year 1, this is a mental strategy rather than a formal written method. Pupils use the Dienes blocks (and later, images) to represent 3-digit numbers but do not record a formal written method if there is no regrouping.</i></p>	
<p>Column method with regrouping</p> <p><i>Dienes blocks should be used alongside the pictorial representations; they can be placed on the place value grid before pupils make pictorial representations.</i></p> <p><i>As in Year 1, the focus for the column method is to develop a strong understanding of place value.</i></p>	

Y2 Subtraction

Strategy & guidance	CPA
Counting back in multiples of ten and one hundred	
Using known number facts to create derived facts <i>Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy, encouraging pupils to apply their knowledge of number bonds to add multiples of ten and 100.</i>	
Subtracting tens and ones <i>Pupils must be taught to partition the second number for this strategy as partitioning both numbers can lead to errors if regrouping is required.</i>	

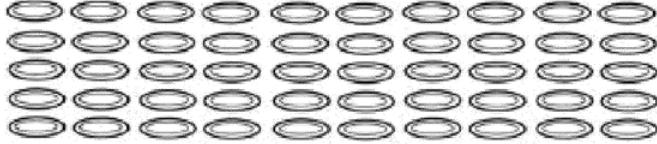
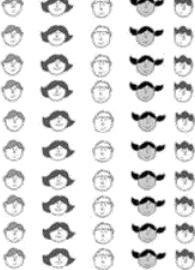
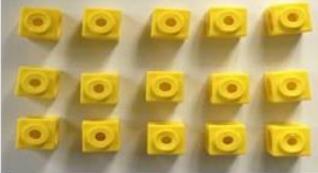
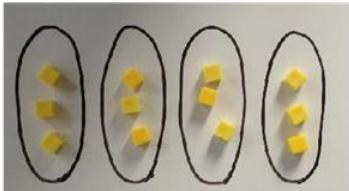
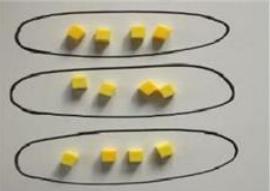
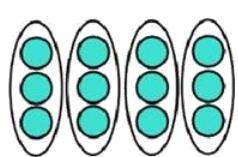
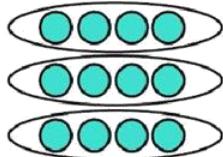
Strategy & guidance	CPA
<p>Round and adjust (sometimes known as a compensating strategy)</p> <p><i>Pupils must be taught to round the number that is being subtracted.</i></p> <p><i>Pupils will develop a sense of efficiency with this method, beginning to identify when this method is more efficient than subtracting tens and then ones.</i></p>	<p>$53 - 17 = 36$</p>
<p>Make ten</p> <p><i>How pupils choose to apply this strategy is up to them. The focus should always be on efficiency.</i></p> <p><i>It relies on an understanding that numbers can be partitioned in different ways in order to subtract to a multiple of ten.</i></p> <p><i>Pupils should develop an understanding that the parts can be added in any order.</i></p>	<p>$42 - 15 =$</p> <p>$42 - 10 - 3 - 2 = 7$</p> <p>$42 - 30 - 2 - 3 = 7$</p> <p>$42 - 32 - 2 - 3 = 7$</p>

Strategy & guidance	CPA
<p>Partitioning to subtract without regrouping</p> <p><i>As in Year 1, the focus is to develop a strong understanding of place value and pupils should always be using concrete manipulatives alongside the pictorial.</i></p> <p><i>Formal recording in columns is unnecessary for this mental strategy. It prepares them to subtract with 3-digits when regrouping is required.</i></p>	<p>263 - 121 = 142</p>
<p>Column method with regrouping</p> <p><i>The focus for the column strong understanding of place value and concrete manipulatives should be used alongside.</i></p> <p><i>Pupils are introduced to calculations that require two instances of regrouping (initially from tens to one and then from hundreds to tens). E.g. 232 - 157 and are given plenty of practice using concrete manipulatives and images alongside their formal written methods, ensuring that important steps are not missed in the recording.</i></p> <p><i>Caution should be exercised when introducing calculations requiring 'regrouping to regroup' (e.g. 204 - 137) ensuring ample teacher modelling using concrete manipulatives and images.</i></p>	<p style="text-align: right;">hundreds tens ones</p> $ \begin{array}{r} 1 \ 3 \ 4 \ 1 \ 7 \\ - \ 1 \ 8 \\ \hline 1 \ 2 \ 9 \end{array} $ <p>134 - 18 = 129</p>

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers.
- Recall and use multiplication and division facts for the 3 and 4 multiplication tables (Year 3).
- Show that multiplication of two numbers can be done in any order (commutative) but division of one number by another cannot.








The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equal (=) signs.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.

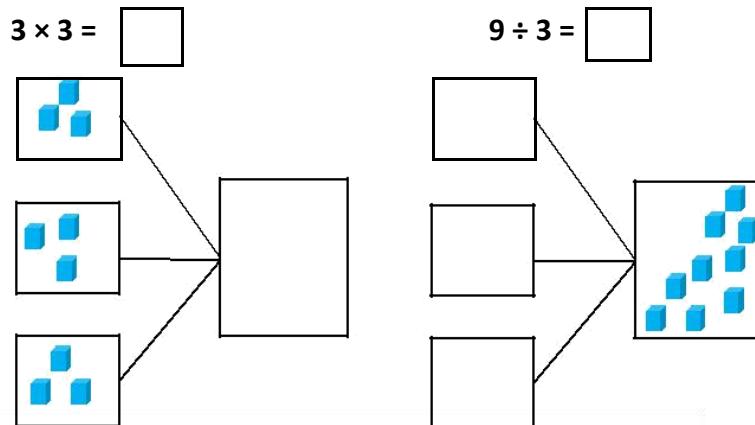
Teachers should refer to definitions and guidance on the [structures for multiplication and division](#) to provide a range of appropriate real-life contexts for calculations.

Y2

Strategy & guidance	Dotted paper (multiplication table of 5)																																																																																				
<p>Skip counting in multiples of 2, 3, 4, 5, 10 from zero</p> <p><i>Pupils can use their fingers as they are skip counting, to develop an understanding of 'groups of'.</i></p> <p><i>Dot arrays can be used to create a visual representation for the different multiplication facts. Bead strings, groups of cubes (or unifix / multilink towers) provide useful concrete representations.</i></p>	<table border="1" data-bbox="806 368 1104 743"> <tr> <td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>0</td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td>1</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>2</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>3</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>4</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>5</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>6</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>7</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>8</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>9</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>10</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>11</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> <tr> <td>12</td><td>●</td><td>●</td><td>●</td><td>●</td><td>●</td></tr> </table>		1	2	3	4	5	0						1	●	●	●	●	●	2	●	●	●	●	●	3	●	●	●	●	●	4	●	●	●	●	●	5	●	●	●	●	●	6	●	●	●	●	●	7	●	●	●	●	●	8	●	●	●	●	●	9	●	●	●	●	●	10	●	●	●	●	●	11	●	●	●	●	●	12	●	●	●	●	●
	1	2	3	4	5																																																																																
0																																																																																					
1	●	●	●	●	●																																																																																
2	●	●	●	●	●																																																																																
3	●	●	●	●	●																																																																																
4	●	●	●	●	●																																																																																
5	●	●	●	●	●																																																																																
6	●	●	●	●	●																																																																																
7	●	●	●	●	●																																																																																
8	●	●	●	●	●																																																																																
9	●	●	●	●	●																																																																																
10	●	●	●	●	●																																																																																
11	●	●	●	●	●																																																																																
12	●	●	●	●	●																																																																																
<p>Multiplication as repeated addition</p> <p><i>Pupils apply skip counting to help find the totals of repeated additions.</i></p>	<p data-bbox="758 1260 1152 1298">$5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = \square$</p> <p data-bbox="742 1603 1183 1671">$\square + 3 + 3 + 3 + 3 = \square$</p> <p data-bbox="853 1709 993 1747">$4 \times 3 = \square$</p>																																																																																				

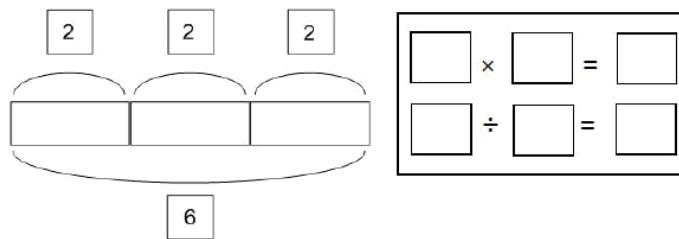
Strategy & guidance	CPA
Arrays to represent multiplication equations	
<i>Concrete manipulatives and images of familiar objects begin to be organised into arrays and, later, are shown alongside dot arrays. It is important to discuss with pupils how arrays can be useful.</i> <i>Pupils begin to understand multiplication in a more abstract fashion, applying their skip counting skills to identify the multiples of the 2x, 5x and 10x tables.</i>	
<i>The relationship between multiplication and division also begins to be demonstrated.</i>	<p>$3 \times 5 =$ <input type="text"/></p> <p>$5 \times 3 =$ <input type="text"/></p> <p>$12 = 3 \times 4$</p> <p>$12 = 4 \times 3$</p>

Strategy & guidance

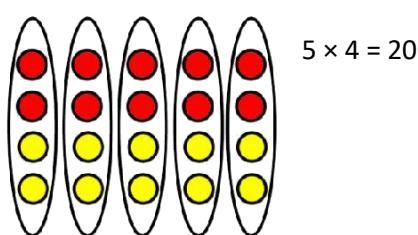
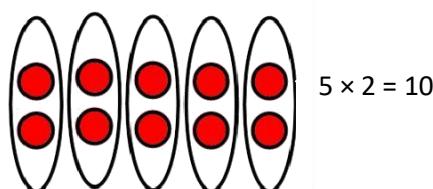

Use of part-part-whole model to establish the inverse relationship between multiplication and division

This link should be made explicit from early on, using the language of the part-part-whole model, so that pupils develop an early understanding of the relationship between multiplication and division. Bar models (with Cuisenaire rods) should be used to identify the whole, the value of the parts and the number of parts.

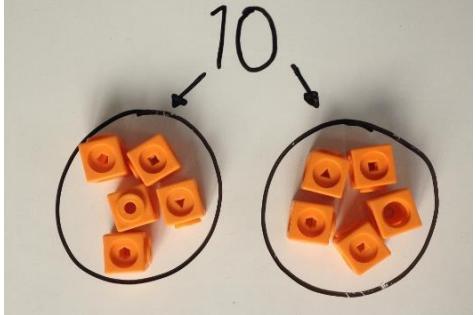
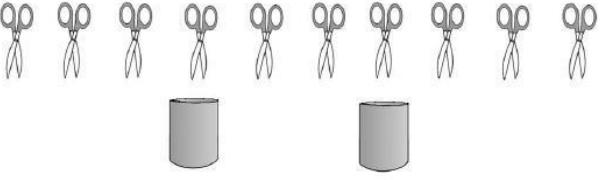
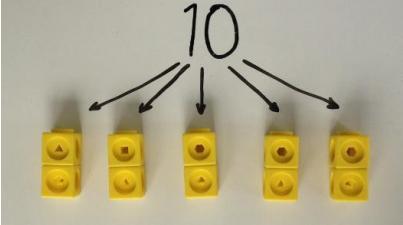
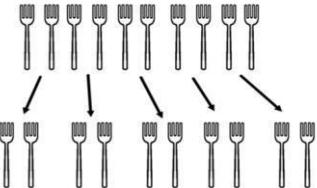
It is important to highlight that with multiplication, the parts are of equal value as this is different to how this model is used for addition and subtraction.

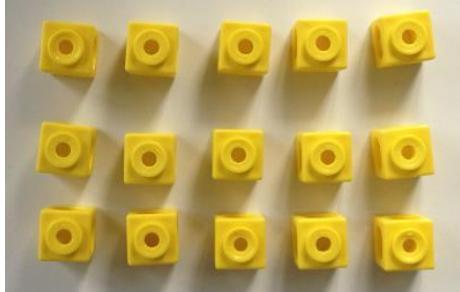
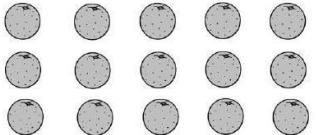
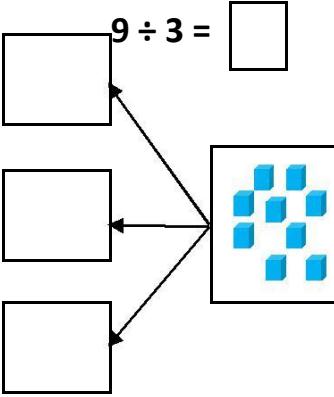

CPA

There are three equal parts. Each part has a value of three. What is the whole?



What multiplication and division equations can you write for each bar model?

Prove that the equations are correct using a bead string.





Doubling to derive new multiplication facts




Pupils learn that known facts from easier multiplication tables can be used to derive facts from related times tables using doubling as a strategy.

At this stage they double the $2 \times$ table facts to derive the $4 \times$ table facts.

Y2 Division

Strategy & guidance	CPA
<p>Division as sharing</p> <p><i>Here, division is shown as sharing.</i></p> <p><i>If we have ten pairs of scissors and we share them between two pots, there will be 5 pairs of scissors in each pot.</i></p>	$10 \div 2 = 5$
<p>Division as grouping</p> <p><i>Here, division is shown as grouping.</i></p> <p><i>If we have ten forks and we put them into groups of two, there are 5 groups.</i></p>	$10 \div 2 = 5$

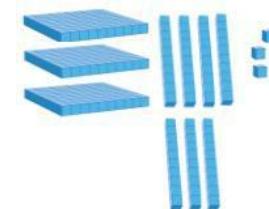
Strategy & guidance	CPA
<p>Use of part-part-whole model to represent division equations and to emphasise the relationship between division and multiplication</p> <p><i>Pupils use arrays of concrete manipulatives and images of familiar objects to solve division equations.</i></p> <p><i>They begin to use dot arrays to develop a more abstract concept of division.</i></p> <p><i>It is important to highlight that with multiplication and division, the parts are of equal value as this is different to how this model is used for addition and subtraction.</i></p>	<p>CPA</p> <p>$15 \div 5 = \boxed{3}$</p> <p>$15 \div 3 = \boxed{5}$</p> <p>Write the division equations that the array represents.</p> <p>$20 \div 4 = \boxed{}$ $20 \div 5 = \boxed{}$</p> <p>The whole is nine. There are three equal parts. What is the value of each part?</p> <p>$9 \div 3 = \boxed{}$</p>

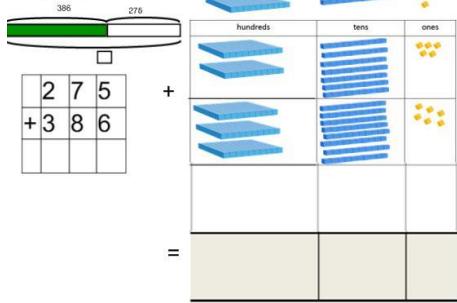
Progression in calculations

Year 3

National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:


- add and subtract numbers mentally, including:
 - a three-digit number and ones
 - a three-digit number and tens
 - a three-digit number and hundreds
- add and subtract numbers with up to four digits, using formal written methods of columnar addition and subtraction (four digits is Year 4)
- find 10 or 100 more or less than a given number
- find 1 000 more or less than a given number (Year 4)
- estimate the answer to a calculation and use inverse operations to check answers


The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

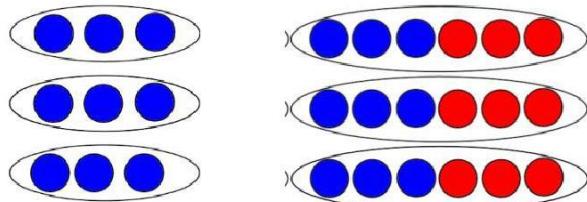
Teachers should refer to definitions and guidance on the [structures for addition and subtraction](#) to provide a range of appropriate real-life contexts for calculations.

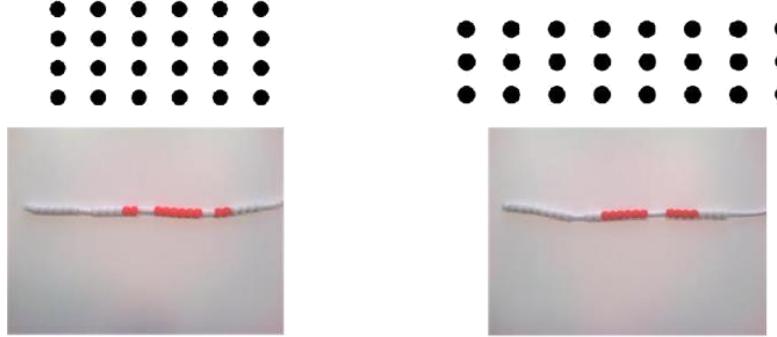
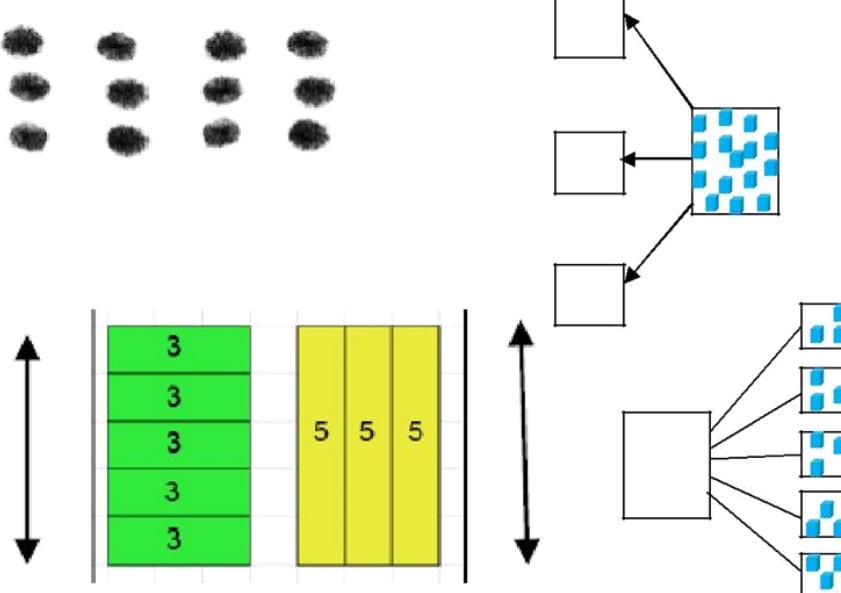
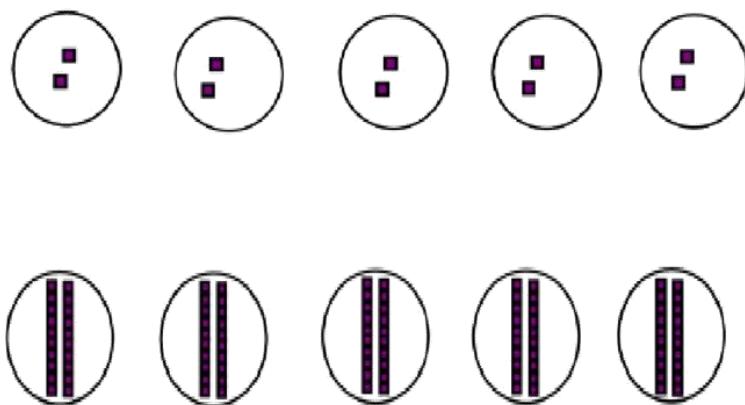
Y3 Addition & Subtraction

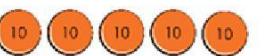
Strategy & guidance	CPA
Add and subtract numbers mentally, including: <ul style="list-style-type: none"> • a three-digit number and ones; • a three-digit number and tens; • a three-digit number and hundreds 	<p>It is important to model the mental strategy using concrete manipulatives in the first instance and pupils should be able to exemplify their own strategies using manipulatives if required.</p>
<p><i>Pupils learn that this is an appropriate strategy when they are able to use known and derived number facts or other mental strategies to complete mental calculations with accuracy.</i></p>	<p>However, pupils should be encouraged to use known facts to derive answers, rather than relying on counting manipulatives or images.</p>
<p><i>To begin with, some pupils will prefer to use this strategy only when there is no need to regroup, using number facts within 10 and derivations. More confident pupils might choose from a range of mental strategies that avoid written algorithms, including (but not exhaustively):</i></p>	<p><u>No regrouping</u></p>
	$345 + 30$ $274 - 50$
	$1128 + 300$ $1312 - 300$
	$326 + 342$ $856 - 724$
	<p>I know $4 + 3 = 7$, so 4 tens plus 3 tens is equal to 7 tens. $345 + 30 = 375$.</p>
	<p><u>With some regrouping</u></p>
	$416 + 25$ $232 - 5$
	$383 + 130$ $455 - 216$
	$611 + 194$ $130 - 40$
	$1482 + 900$ $2382 - 500$

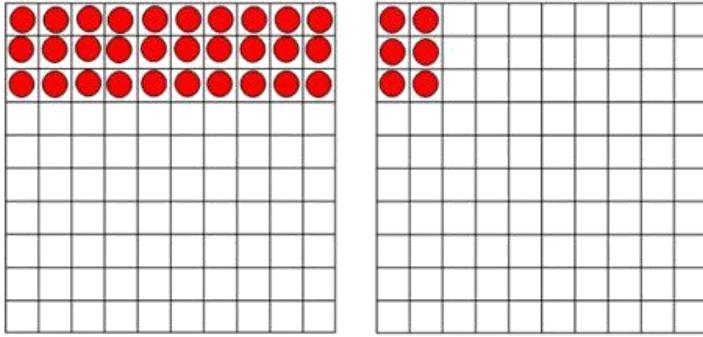
Strategy & guidance	CPA								
<p>Written column method for calculations that require regrouping with up to 4-digits</p> <p><i>Dienes blocks should be used alongside the pictorial representations during direct teaching and can be used by pupils both for support and challenge. Place value counters can also be introduced at this stage.</i></p> <p><i>This work revises and reinforces ideas from Key Stage 1, including the focus on place value – see Year 2 exemplification.</i></p> <p><i>Direct teaching of the columnar method should require at least one element of regrouping, so that pupils are clear about when it is most useful to use it. Asking them ‘Can you think of a more efficient method?’ will challenge them to apply their number sense / number facts to use efficient mental methods where possible.</i></p> <p><i>As in Year 2, pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 they become more familiar with calculations that require ‘regrouping to regroup’. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language.</i></p> <p><i>Pupils should be challenged as to whether this is the most efficient method, considering whether mental methods (such as counting on, using known number facts, round and adjust etc.) may be likelier to produce an accurate solution.</i></p> <p><i>Pupils requiring support might develop their confidence in the written method using numbers that require no regrouping.</i></p>	<p>As for the mental strategies, pupils should be exposed to concrete manipulatives modelling the written calculations and should be able to represent their written work pictorially or with concrete manipulatives when required.</p> <p>Again, they should be encouraged to calculate with known and derived facts and should not rely on counting images or manipulatives.</p> <p>5 + 6 = 11 so I will have 11 ones which I regroup for 1 ten and 1 one.</p> <p><u>Regrouping (including multiple separate instances)</u></p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">672 + 136</td> <td style="width: 50%;">734 – 82</td> </tr> <tr> <td>468 + 67</td> <td>831 - 76</td> </tr> <tr> <td>275 + 386</td> <td>435 – 188</td> </tr> </table> <p><u>‘Regrouping to regroup’</u></p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">204 – 137</td> <td style="width: 50%;">1035 - 851</td> </tr> </table>	672 + 136	734 – 82	468 + 67	831 - 76	275 + 386	435 – 188	204 – 137	1035 - 851
672 + 136	734 – 82								
468 + 67	831 - 76								
275 + 386	435 – 188								
204 – 137	1035 - 851								

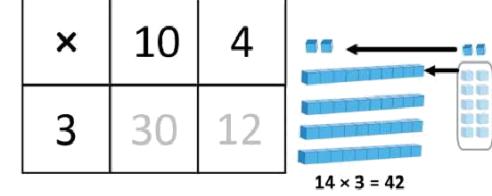
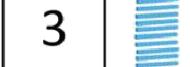
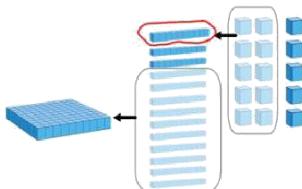
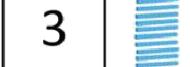
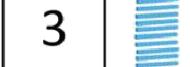
Strategy & guidance	CPA
<p>Find 10, 100 and 1000 more or less than a given number</p> <p><i>As pupils become familiar with numbers up to 1000, place value should be emphasised and comparisons drawn between adding tens, hundreds (revision - see Year 2 guidance) and thousands, including use of concrete manipulatives and appropriate images.</i></p> <p><i>After initial teaching, this should be incorporated into transition activities and practised regularly.</i></p>	$1042 + 1000 = 2042$


National Curriculum objectives linked to multiplication and division

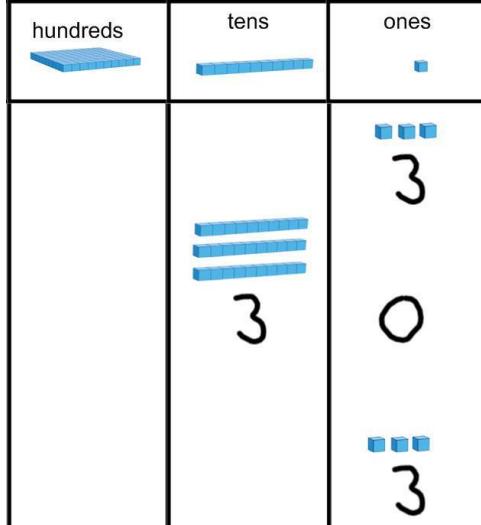
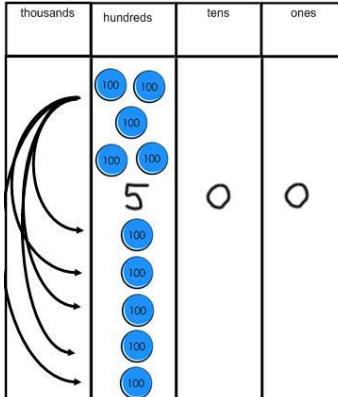



These objectives are explicitly covered through the strategies outlined in this document:


- count from 0 in multiples of 4, 8, 50 and 100
- recall and use multiplication and division facts for the 3, 4, 6, and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects


Teachers should refer to definitions and guidance on the [structures for multiplication and division](#) to provide a range of appropriate real-life contexts for calculations.






Y3 Multiplication

Strategy & guidance	CPA
<p>Doubling to derive new multiplication facts</p> <p><i>Pupils continue to make use of the idea that facts from easier times tables can be used to derive facts from related times tables using doubling as a strategy.</i></p> <p><i>This builds on the doubling strategy from Year 2.</i></p>	$3 \times 3 = 9$ $3 \times 6 = \text{double } 9 = 18$



Strategy & guidance	CPA
<p>Skip counting in multiples of 2, 3, 4, 5, 6, 8 and 10</p> <p><i>Rehearsal of previously learnt tables as well as new content for Year 3 should be incorporated into transition activities and practised regularly.</i></p>	
<p>Use of part-part-whole model with arrays and bar models to establish commutativity and inverse relationship between multiplication and division</p> <p><i>In these contexts pupils are able to identify all the equations in a fact family.</i></p>	
<p>Ten times greater</p> <p><i>Pupils's work on this must be firmly based on concrete representations – the language of ten times greater must be well modelled and understood to prevent the numerical misconception of 'adding a zero'.</i></p>	

Strategy & guidance	CPA
<p>Multiplying by 10, 100 and 1000</p> <p><i>Building on the ten times greater work, pupils use appropriate Dienes blocks and place value counters to multiply 2, 3, 4, 5 and 10 by 10, 100 and 1000.</i></p>	$5 \times 1 = 5$ $5 \times 10 = 50$ $3 \times 1 = 3$ $3 \times 100 = 300$
<p>Using known facts for multiplying by multiples of 10, 100 and 1000</p> <p><i>Pupils' growing understanding of place value, allows them to make use of known facts to derive multiplications using powers of 10.</i></p> <p><i>It is important to use tables with which they are already familiar (i.e. not 7 or 9 tables in Year 3)</i></p>	$5 = 1 \times 5$ $50 = 10 \times 5$ $500 = 100 \times 5$ $5000 = 1000 \times 5$ $3 \times 2 = 6$ $30 \times 2 = 60$ $300 \times 2 = 600$ $3000 \times 2 = 6000$

Strategy & guidance	CPA												
<p>Multiplication of 2-digit numbers with partitioning (no regrouping)</p> <p><i>Children should always consider whether partitioning is the best strategy – if it is possible to use strategies such as doubling (some may use doubling twice for $\times 4$), they need to choose the most efficient strategy.</i></p> <p><i>Children may wish to make jottings, including a full grid as exemplified here – but grid method is not a formal method and its only purpose is to record mental calculations. This supports the development of the necessary mental calculating skills but does not hinder the introduction of formal written methods in Year 4. Concrete manipulatives are essential to develop understanding.</i></p>	<p style="text-align: center;">3×12 $12 = 10 + 2$</p> <p style="text-align: center;">3×10 3×2</p> <p style="text-align: center;">Now add the total number of tens and ones</p> <table border="1" data-bbox="525 900 906 1091"> <tr> <td style="text-align: center;">\times</td> <td style="text-align: center;">10</td> <td style="text-align: center;">2</td> </tr> <tr> <td style="text-align: center;">3</td> <td style="text-align: center;">≡≡≡</td> <td style="text-align: center;">••••</td> </tr> </table> <table border="1" data-bbox="917 900 1302 1091"> <tr> <td style="text-align: center;">\times</td> <td style="text-align: center;">10</td> <td style="text-align: center;">2</td> </tr> <tr> <td style="text-align: center;">3</td> <td style="text-align: center;">30</td> <td style="text-align: center;">6</td> </tr> </table> <p style="text-align: center;">$3 \times 12 = 36$</p>	\times	10	2	3	≡≡≡	••••	\times	10	2	3	30	6
\times	10	2											
3	≡≡≡	••••											
\times	10	2											
3	30	6											

Strategy & guidance	CPA																		
<p>Multiplication of 2-digit numbers with partitioning (regrouping)</p> <p><i>Using concrete manipulatives and later moving to using images that represent them, supports pupils' early understanding, leading towards formal written methods in Year 4.</i></p> <p><i>Once again, this is a mental strategy, which they may choose to support with informal jottings, including a full grid, as exemplified here.</i></p> <p><i>Pupils must be encouraged to make use of their known multiplication facts and their knowledge of place value to calculate, rather than counting manipulatives.</i></p>	<table border="1" data-bbox="552 316 837 503"> <tr> <td>\times</td> <td>10</td> <td>4</td> </tr> <tr> <td>3</td> <td></td> <td></td> </tr> </table> <table border="1" data-bbox="885 316 1171 503"> <tr> <td>\times</td> <td>10</td> <td>4</td> </tr> <tr> <td>3</td> <td>30</td> <td>12</td> </tr> </table> <div data-bbox="869 316 1361 512"> <p>$14 \times 3 = 42$</p> </div> <table border="1" data-bbox="541 570 842 765"> <tr> <td>\times</td> <td>40</td> <td>5</td> </tr> <tr> <td>3</td> <td></td> <td></td> </tr> </table> <div data-bbox="869 592 1171 781"> </div>	\times	10	4	3			\times	10	4	3	30	12	\times	40	5	3		
\times	10	4																	
3																			
\times	10	4																	
3	30	12																	
\times	40	5																	
3																			

Y3 Division

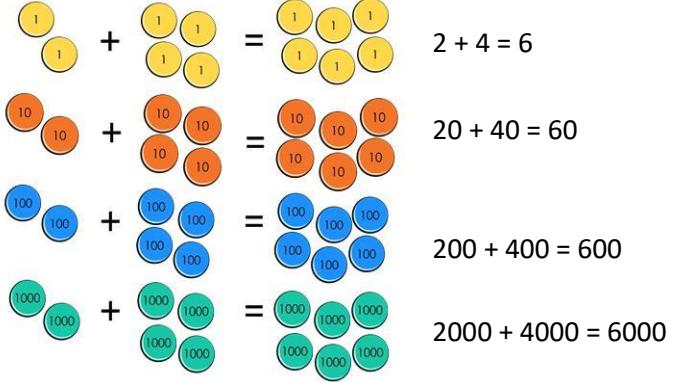
Strategy & Guidance	CPA
<p>Dividing multiples of 10, 100 and 1000 by 10, 100 and 1000 using scaling down</p> <p><i>Pupils use the strategy of 'scaling down', representing numbers with concrete manipulatives and making the value ten times smaller.</i></p>	<p>hundreds tens ones</p> <p>3 3 3</p> <p>3 0 3</p> <p>3 x 10 = 30</p> <p>30 ÷ 10 = 3</p>
<p>Dividing multiples of 10, 100 and 1000 by 10, 100 and 1000 using grouping</p> <p><i>Pupils divide by 10, 100 and 1000 by making groups of the divisor.</i></p>	<p>$500 \div 100 = \square$</p> <p>My whole is 500 and the value of the equal parts is 100. How many parts are there?</p> <p>thousands hundreds tens ones</p> <p>5 0 0</p>

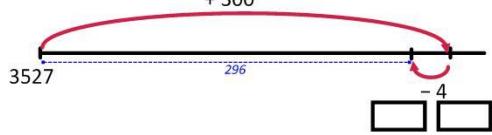
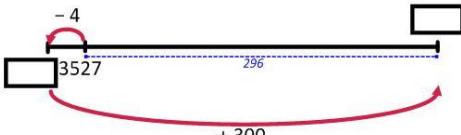
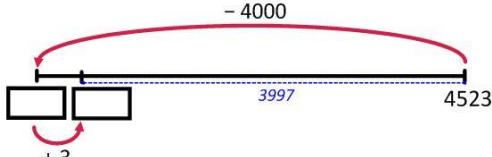
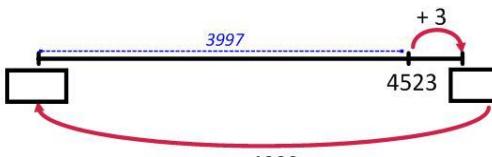
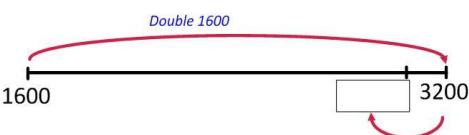
Progression in calculations

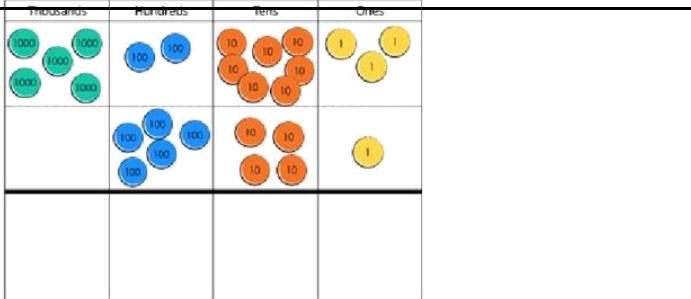
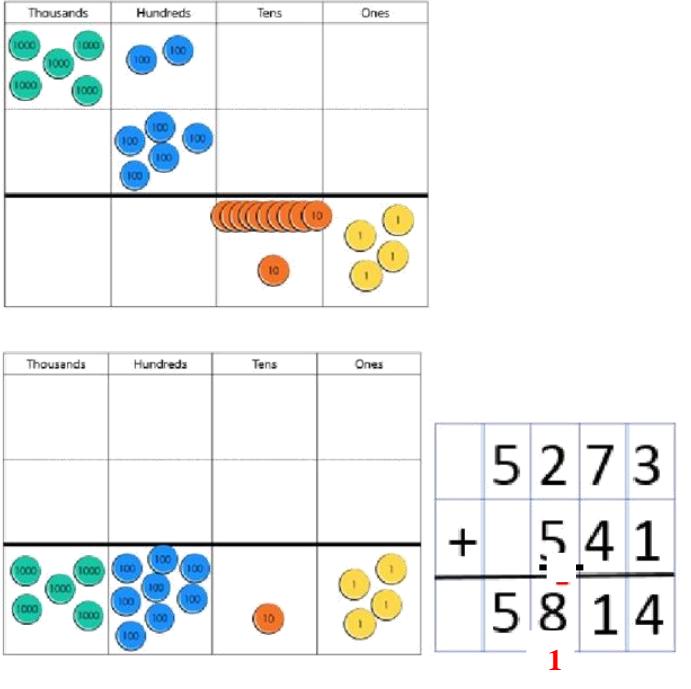
Year 4

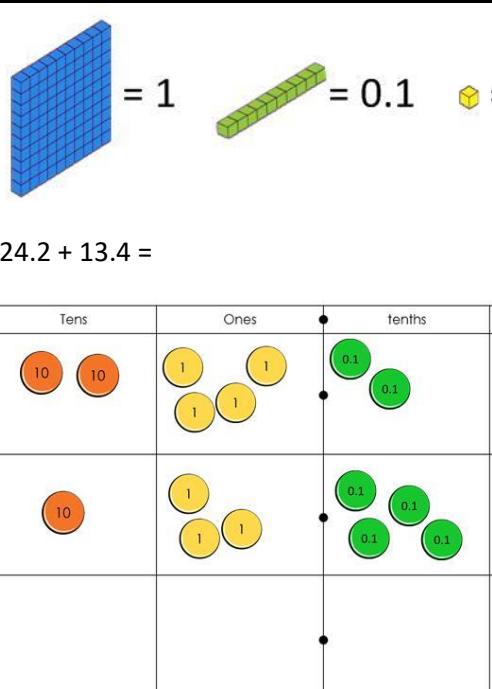
National curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:


- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate
- find 1 000 more or less than a given number
- estimate and use inverse operations to check answers to a calculation






N.B. There is no explicit reference to mental calculation strategies in the programmes of study for Year 4 in the national curriculum. However, with an overall aim for fluency, appropriate mental strategies should always be considered before resorting to formal written procedures, with the emphasis on pupils making their own choices from an increasingly sophisticated range of strategies.



The following objectives should be planned for lessons where new strategies are being introduced and developed:


- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
- solve simple measure and money problems involving fractions and decimals to two decimal places

Y4 Addition & Subtraction

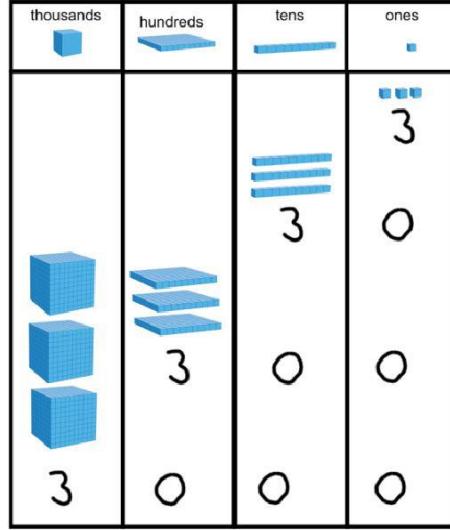
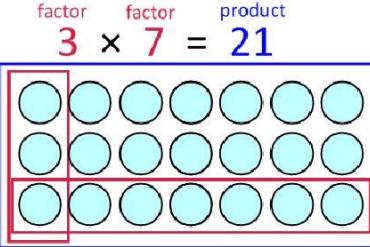
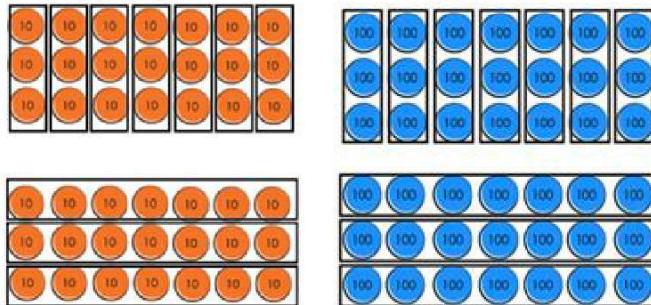
Strategies & Guidance	CPA
<p>Count forwards and backwards in steps of 10, 100 and 1000 for any number up to 10 000.</p> <p><i>Pupils should count on and back in steps of ten, one hundred and one thousand from different starting points. These should be practised regularly, ensuring that boundaries where more than one digit changes are included.</i></p> <p>Count forwards and backwards in tenths and hundredths</p>	 <p>Pay particular attention to boundaries where regrouping happens more than once and so more than one digit changes. E.g. $990 + 10$ or $19.9 + 0.1$</p>
<p>Using known facts and knowledge of place value to derive facts.</p> <p>Add and subtract multiples of 10, 100 and 1000 mentally</p> <p><i>Pupils extend this knowledge to mentally adding and subtracting multiples of 10, 100 and 1000. Counting in different multiples of 10, 100 and 1000 should be incorporated into transition activities and practised regularly.</i></p>	<p>$2 + 4 = 6$ $20 + 40 = 60$ $200 + 400 = 600$ $2000 + 4000 = 6000$</p>
<p>Adding and subtracting by partitioning one number and applying known facts.</p> <p><i>By Year 4 pupils are confident in their place value knowledge and are calculating mentally both with calculations that do not require regrouping and with those that do.</i></p>	<p>See Y3 guidance on mental addition & subtraction, remembering that use of concrete manipulatives and images in both teaching and reasoning activities will help to secure understanding and develop mastery.</p>

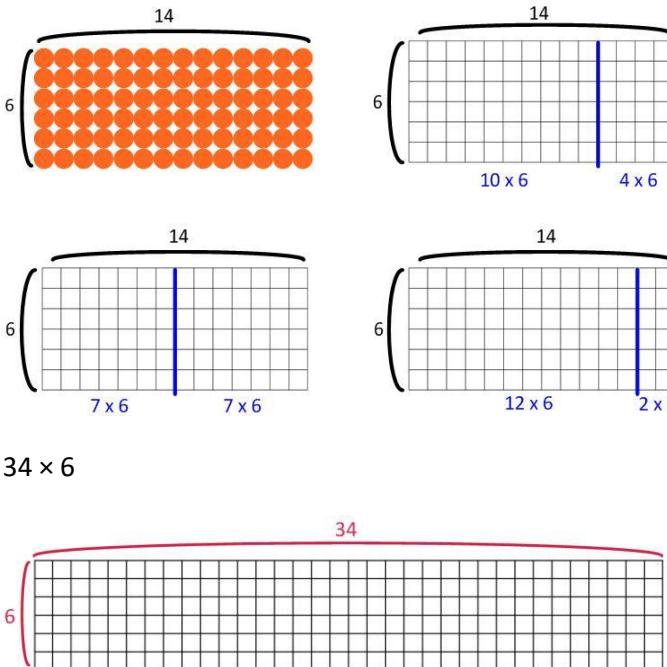
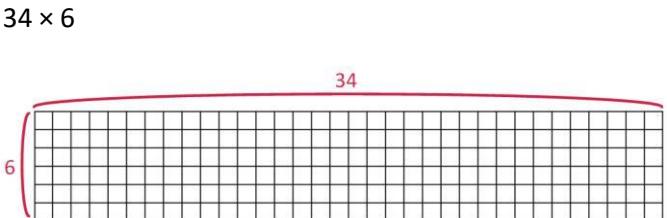
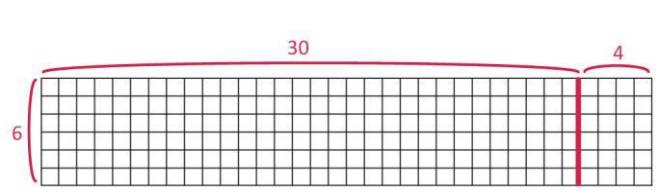
Strategies & Guidance	CPA
<p>Round and adjust</p> <p><i>Pupils should recognise that this strategy is useful when adding and subtracting near multiples of ten. They should apply their knowledge of rounding.</i></p> <p><i>It is very easy to be confused about how to adjust and so visual representations and logical reasoning are essential to success with this strategy.</i></p> <p><i>Build flexibility by completing the same calculation in a different order.</i></p>	$3527 + 296 = 3827 - 4$ <p>Completing the same calculation but adjusting first:</p> $3527 + 296 = 3523 + 300$ $4523 - 3997 = 523 + 3$ <p>Completing the same calculation but adjusting first:</p> $4523 - 3997 = 4526 - 4000$
<p>Near doubles</p> <p><i>Pupils should be able to double numbers up to 100 and use this to derive doubles for multiples of ten. These facts can be adjusted to calculate near doubles.</i></p>	$1600 + 1598 = \text{double } 1600 - 2$

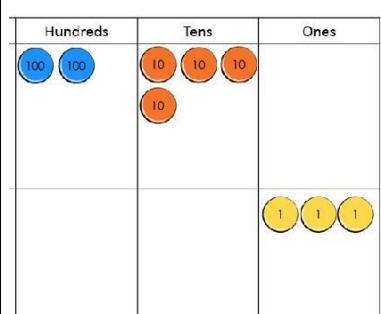
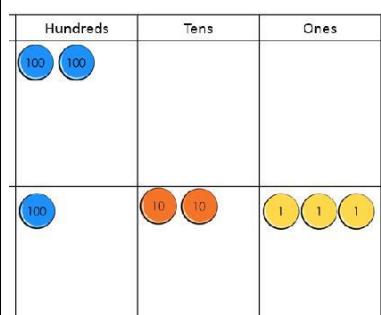
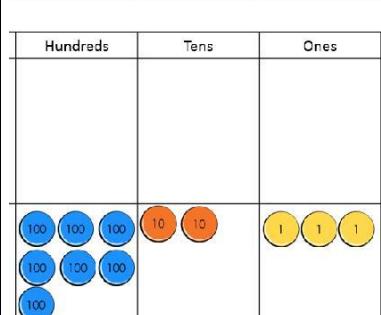
Strategies & Guidance	CPA
<p>Written column methods for addition</p> <p><i>Place value counters are a useful manipulative for representing the steps of the formal written method. These should be used alongside the written layout to ensure conceptual understanding and as a tool for explaining.</i></p>	
<p>Written column methods for subtraction</p> <p><i>Place value counters are a useful manipulative for representing the steps of the formal written method. These should be used alongside the written layout to ensure conceptual understanding and as a tool for explaining.</i></p>	

Strategies & Guidance	CPA												
<p>Calculating with decimal numbers</p> <p>Assign different values to Dienes equipment. If a Dienes 100 block has the value of 1, then a tens rod has a value of 0.1 and a ones cube has a value of 0.01. These can then be used to build a conceptual understanding of the relationship between these.</p> <p>Place value counters are another useful manipulative for representing decimal numbers.</p> <p>All of the calculation strategies for integers (whole numbers) can be used to calculate with decimal numbers.</p>	<p>$24.2 + 13.4 =$</p> <table border="1" data-bbox="726 601 1218 983"> <thead> <tr> <th data-bbox="726 601 869 646">Tens</th> <th data-bbox="869 601 1012 646">Ones</th> <th data-bbox="1012 601 1218 646">tenths</th> </tr> </thead> <tbody> <tr> <td data-bbox="726 646 869 736"> </td><td data-bbox="869 646 1012 736"> </td><td data-bbox="1012 646 1218 736"> </td></tr> <tr> <td data-bbox="726 736 869 826"> </td><td data-bbox="869 736 1012 826"> </td><td data-bbox="1012 736 1218 826"> </td></tr> <tr> <td data-bbox="726 826 869 983"></td><td data-bbox="869 826 1012 983"></td><td data-bbox="1012 826 1218 983"> </td></tr> </tbody> </table>	Tens	Ones	tenths									
Tens	Ones	tenths											

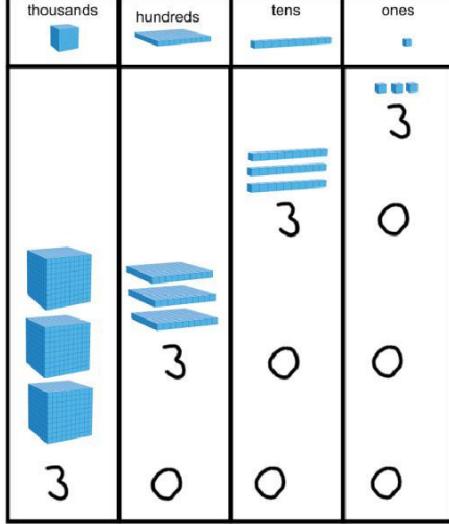
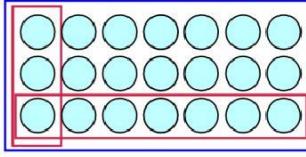
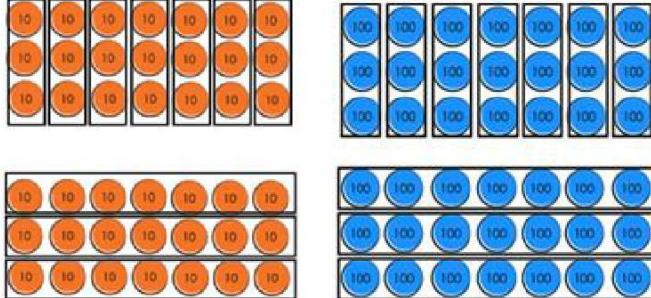
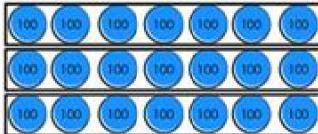
National Curriculum objectives linked to multiplication and division

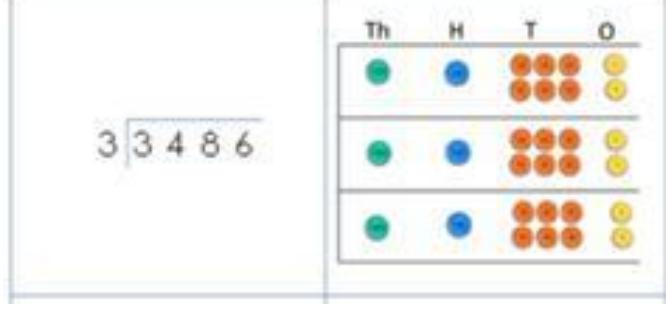
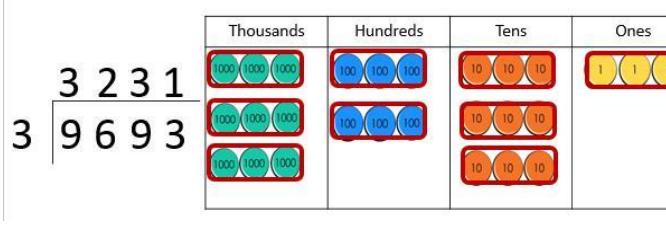
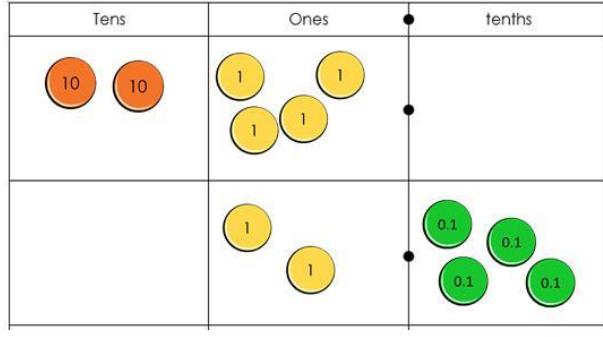
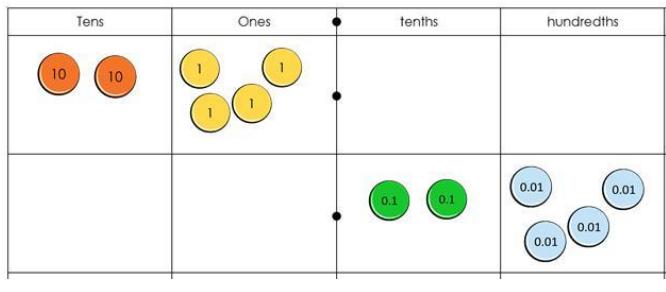



These objectives are explicitly covered through the strategies outlined in this document:




- count from 0 in multiples of 6, 7, 9, 25 and 1000
- recall and use multiplication and division facts for multiplication tables up to 12×12
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- recognise and use factor pairs and commutativity in mental calculations
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.





The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.





Y4 Multiplication





Strategies & Guidance	CPA
<p>Multiplying by 10 and 100</p> <p><i>When you multiply by ten, each part is ten times greater. The ones become tens, the tens become hundreds, etc.</i></p> <p><i>When multiplying whole numbers, a zero holds a place so that each digit has a value that is ten times greater.</i></p> <p><i>Repeated multiplication by ten will build an understanding of multiplying by 100 and 1000</i></p>	<p>thousands hundreds tens ones</p> <p>3 0 3 0</p> <p>3 0 0 0</p> <p>3 0 0 0</p> <p>$3 \times 10 = 30$</p> <p>$3 \times 100 = 300$</p> <p>$3 \times 1000 = 3000$</p>
<p>Using known facts and place value for mental multiplication involving multiples of 10 and 100</p> <p><i>Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally.</i></p> <p><i>Emphasis is placed on understanding the relationship (10 times or 100 times greater) between a known number fact and one to be derived, allowing for larger 'fact families' to be derived from a single known number fact.</i></p> <p><i>Knowledge of commutativity (that multiplication can be completed in any order) is used to find a range of related facts.</i></p>	<p>factor factor product</p> <p>$3 \times 7 = 21$</p> <p>factor factor product</p> <p>$7 \times 3 = 21$</p> <p>$30 \times 7 = 210$ $300 \times 7 = 2100$</p> <p>$70 \times 3 = 210$ $700 \times 3 = 2100$</p> <p>$7 \times 30 = 210$ $7 \times 300 = 2100$</p> <p>$3 \times 70 = 210$ $3 \times 700 = 2100$</p>

Strategies & Guidance	CPA
<p>Multiplying by partitioning one</p> <p><i>Pupils build on mental multiplication strategies and develop an explicit understanding of distributive law, which allows them to explore new strategies to make more efficient calculations.</i></p> <p><i>As well as partitioning into tens and ones (a familiar strategy), they begin to explore compensating strategies and factorisation to find the most efficient solution to a calculation.</i></p> <p>Distributive law</p> $a \times (b + c) = a \times b + a \times c$	<p>14×6</p> <p>34×6</p> <p>$30 \times 6 + 4 \times 6$</p>
<p>Mental multiplication of three 1-digit numbers, using the associative law</p> <p><i>Pupils first learn that multiplication can be performed in any order, before applying this to choose the most efficient order to complete calculations, based on their increasingly sophisticated number facts and place value knowledge.</i></p>	<p>Four pots each containing two flowers which each have seven petals. How many petals in total?</p> $(4 \times 2) \times 7 \text{ or } 4 \times (2 \times 7)$

Strategies & Guidance	CPA
Short multiplication of 3-digit number by 1-digit number	
<p><i>To begin with pupils are presented with calculations that require no regrouping or only regrouping from the ones to the tens. Their conceptual understanding is supported by the use of place value counters, both during teacher demonstrations and during their own practice.</i></p>	<p>To calculate 241×3, represent the number 241. Multiply each part by 3, regrouping as needed.</p>
<p><i>With practice pupils will be able to regroup in any column, including from the hundreds to the thousands, including being able to multiply numbers containing zero and regrouping through multiple columns in a single calculation.</i></p> <p>—</p>	$ \begin{array}{r} 241 \\ \times 3 \\ \hline 723 \end{array} $

Y4 Division

Strategies & Guidance	CPA
<p>Dividing by 10 and 100</p> <p><i>When you divide by ten, each part is ten times smaller. The hundreds become tens and the tens become ones. Each digit is in a place that gives it a value that is ten times smaller.</i></p> <p><i>When dividing multiples of ten, a place holder is no longer needed so that each digit has a value that is ten times smaller. E.g. $210 \div 10 = 21$</i></p>	$30 \div 10 = 3$ $300 \div 100 = 3$ $3000 \div 1000 = 3$ $300 \div 10 = 30$ $3000 \div 100 = 30$ $3000 \div 10 = 300$
<p>Derived facts</p> <p><i>Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally.</i></p> <p><i>Understanding of the inverse relationship between multiplication and division allows corresponding division facts to be derived.</i></p>	<p>$21 \div 3 = 7$</p> $21 \div 7 = 3$ $210 \div 7 = 30$ $210 \div 3 = 70$ $210 \div 30 = 7$ $210 \div 70 = 3$ $2100 \div 7 = 300$ $2100 \div 3 = 700$ $2100 \div 300 = 7$ $2100 \div 700 = 3$

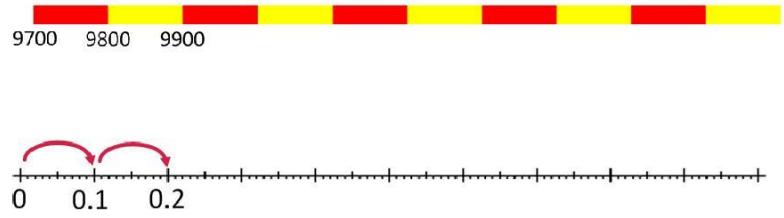
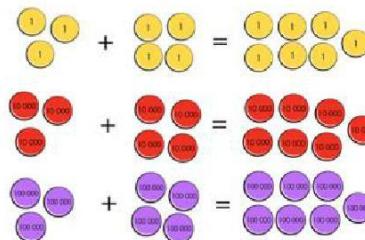
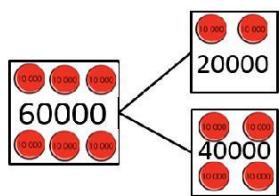
Strategies & Guidance	CPA
<p>Short division of 4-digit numbers by 1-digit numbers</p> <p><i>Pupils start with dividing 4-digit numbers by 2, 3 and 4, where no regrouping is required. Place value counters are used simultaneously in a place value chart, to develop conceptual understanding.</i></p> <p><i>They progress to calculations that require regrouping in the hundreds or tens columns.</i></p> <p><i>Pupils build on their conceptual knowledge of division to become confident with dividing numbers where the tens digit is smaller than the divisor, extending this to any digit being smaller than the divisor.</i></p>	<p>Division as sharing</p> <p>Division as grouping</p>
<p>Division of a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths</p> <p><i>When you divide by ten, each part is ten times smaller. The tens become ones and the ones become tenths. Each digit is in a place that gives it a value that is ten times smaller.</i></p>	<p>$24 \div 10 = 2.4$</p> <p>$24 \div 100 = 0.24$</p>

Progression in calculations

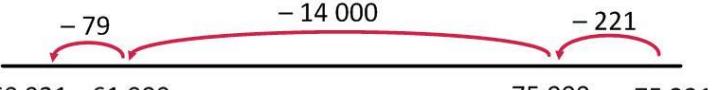
Year 5 + Year 6

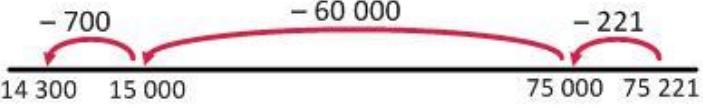
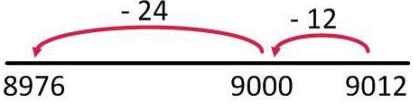
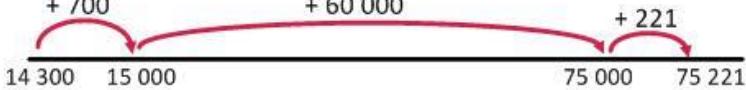
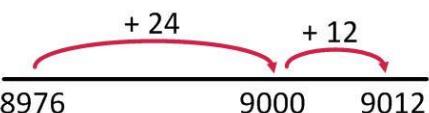
Year 5 and Year 6 are together because the calculation strategies used are broadly similar, with Year 6 using larger and smaller numbers. Any differences for Year 6 are highlighted in red.

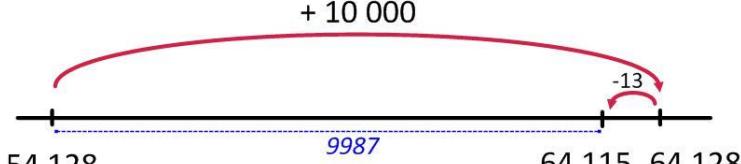
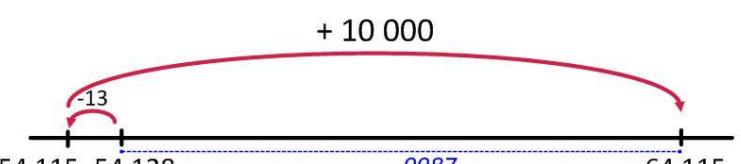
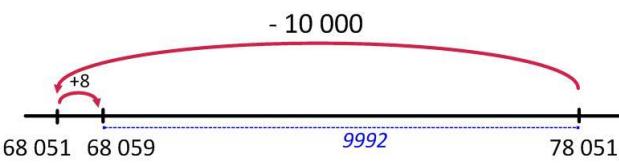
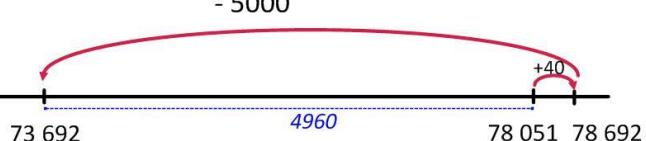
National Curriculum objectives linked to integer addition and subtraction




These objectives are explicitly covered through the strategies outlined in this document:

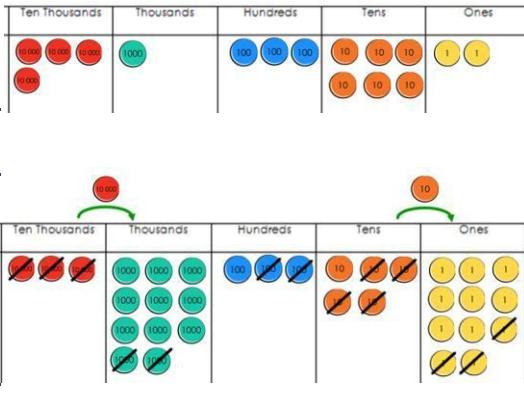
- add and subtract numbers mentally with increasingly large numbers
- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- use negative numbers in context, and calculate intervals across zero
- perform mental calculations, including with mixed operations and large numbers
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy


The following objectives should be planned for lessons where new strategies are being introduced and developed:





- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.





Y5 and Y6 Addition & Subtraction

Strategies & Guidance	CPA																				
<p>Count forwards or backwards in steps of powers of 10 for any given number up to 1 000 000</p> <p><i>Skip counting forwards and backwards in steps of powers of 10 (i.e. 10, 100, 1000, 10 000 and 100 000) should be incorporated into transition activities and practised regularly.</i></p>	<p>Support with place value counters on a place value chart, repeatedly adding the same counter and regrouping as needed.</p> <table border="1" data-bbox="609 534 1393 653"> <tr> <td>Thousands</td> <td>Tens</td> <td>Thousands</td> <td>Hundreds</td> <td>Tens</td> <td>Ones</td> <td>•</td> <td>Tenths</td> <td>Hundredths</td> <td>Thousands</td> </tr> <tr> <td></td> </tr> </table>	Thousands	Tens	Thousands	Hundreds	Tens	Ones	•	Tenths	Hundredths	Thousands										
Thousands	Tens	Thousands	Hundreds	Tens	Ones	•	Tenths	Hundredths	Thousands												
<p><i>In Year 5 pupils work with numbers up to 1 000 000 as well as tenths, hundredths and thousandths.</i></p> <p><i>In Year 6 pupils work with numbers up to 10 000 000.</i></p>	<p>Counting sticks and number lines:</p> <p>Pay particular attention to boundaries where regrouping happens more than once and so more than one digit changes. e.g. $9900 + 100 = 10 000$ or $99 000 + 1000 = 100 000$</p>																				
<p>Using known facts and understanding of place value to derive</p> <p><i>Using the following language makes the logic explicit: I know three ones plus four ones is equal to seven ones. Therefore, three ten thousands plus four ten thousands is equal to seven ten thousands.</i></p> <p><i>In Year 5 extend to multiples of 10 000 and 100 000 as well as tenths, hundredths and thousandths.</i></p> <p><i>In Year 6 extend to multiples of one million.</i></p> <p><i>These derived facts should be used to estimate and check answers to calculations.</i></p>	<p>$3 + 4 = 7$ $30 000 + 40 000 = 70 000$ $300 000 + 400 000 = 700 000$</p> <p>$20 000 + 40 000 = 60 000$ $40 000 + 20 000 = 60 000$ $60 000 - 40 000 = 20 000$ $60 000 - 20 000 = 40 000$</p> <p>$0.6 = 0.2 + 0.4$ $0.6 = 0.4 + 0.2$ $0.2 = 0.6 - 0.4$ $0.4 = 0.6 - 0.2$</p>																				


Strategies & Guidance	CPA
<p>Partitioning one number and applying known facts to add.</p> <p><i>Pupils can use this strategy mentally or with jottings as</i></p> <p><i>Pupils should be aware of the range of choices available when deciding how to partition the number that is to be added.</i></p> <p><i>They should be encouraged to count on from the number of greater value as this will be more efficient. However, they should have an understanding of the commutative law of addition, that the parts can be added in any order.</i></p> <p><i>Pupils have experience with these strategies with smaller numbers from previous years and so the focus should be on developing flexibility and exploring efficiency.</i></p>	<p>Partitioning into place value amounts (canonical partitioning):</p> $4650 + 7326 = 7326 + 4000 + 600 + 50$ <p>With place value counters, represent the larger number and then add each place value part of the other number. The image above shows the thousands being added.</p> <p>Represent pictorially with an empty numberline:</p> <p>Partitioning in different ways (non-canonical partitioning):</p> <p>Extend the 'Make ten' strategy (see guidance in Y1 or Y2) to count on to a multiple of 10.</p> $6785 + 2325 = 6785 + 15 + 200 + 2110$ <p>The strategy can be used with decimal numbers, Make one:</p> $14.7 + 3.6 = 14.7 + 0.3 + 3.3 = 15 + 3.3$

Strategies & Guidance	CPA												
<p>Subtraction by partitioning and applying known facts.</p> <p><i>Pupils can use this strategy mentally or with jottings as needed.</i></p> <p><i>range of choices available when deciding how to partition the number that is to be subtracted.</i></p> <p><i>Pupils have experience with these strategies with smaller numbers from previous years and so the focus should be on developing flexibility and exploring efficiency.</i></p>	<p>Partitioning into place value amounts (canonical partitioning):</p> $75\ 221 - 14\ 300 = 75\ 221 - 10\ 000 - 4000 - 300$ <table border="1" data-bbox="615 444 1329 691"> <thead> <tr> <th>Hundred Thousands</th> <th>Ten Thousands</th> <th>Thousands</th> <th>Hundreds</th> <th>Tens</th> <th>Ones</th> </tr> </thead> <tbody> <tr> <td></td> <td>10 000 10 000 10 000 10 000 10 000 10 000</td> <td>1000 1000 1000 1000 1000</td> <td>100 100 100 100</td> <td>10 10</td> <td>1</td> </tr> </tbody> </table> <p>Represent pictorially with a number line, starting on the right and having the arrows jump to the left:</p> <p>Develop understanding that the parts can be subtracted in any order and the result will be the same:</p> <p>Partitioning in different ways (non-canonical partitioning):</p> <p>Extend the 'Make ten' strategy (see guidance in Y1 or Y2) to count back to a multiple of 10.</p>	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones		10 000 10 000 10 000 10 000 10 000 10 000	1000 1000 1000 1000 1000	100 100 100 100	10 10	1
Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones								
	10 000 10 000 10 000 10 000 10 000 10 000	1000 1000 1000 1000 1000	100 100 100 100	10 10	1								

Strategies & Guidance	CPA
<p>Calculate difference by “counting back”</p> <p><i>It is interesting to note that finding the difference is reversible. For example, the difference between 5 and 2 is the same as the difference between 2 and 5. This is not the case for other subtraction concepts.</i></p>	<p>$75\ 221 - 14\ 300$</p> <p>Place the numbers either end of a numberline and work out the difference between them. Select efficient jumps.</p> <p>Finding the difference is efficient when the numbers are close to each other:</p> <p>$9012 - 8976$</p>
<p>Calculate difference by “counting on”</p> <p><i>Addition strategies can be used to find difference.</i></p>	<p>$75\ 221 - 14\ 300$</p> <p>Finding the difference is efficient when the numbers are close to each other</p> <p>$9012 - 8976$</p>

Strategies & Guidance	CPA
<p>Round and adjust</p> <p>Addition and subtraction</p> <p><i>Pupils should recognise that this strategy is useful when adding and subtracting near multiples of ten. They should apply their knowledge of rounding.</i></p> <p><i>It is very easy to be confused about how to adjust and so visual representations and logical reasoning are essential to success with this strategy.</i></p>	<p>Addition</p> $54\ 128 + 9987 = 54\ 128 + 10\ 000 - 13 = 64\ 128 - 13$ <p>Pupils should realise that they can adjust first:</p> $54\ 128 + 9987 = 54\ 128 - 13 + 10\ 000 = 54\ 115 + 10\ 000$ <p>Subtraction</p> $78\ 051 - 9992 = 78\ 051 - 10\ 000 + 8 = 68\ 051 + 8$ <p>Pupils should realise that they can adjust first:</p> $78\ 051 - 4960 = 78\ 051 + 40 - 5000 = 78\ 692 - 5000$
<p>Near doubles</p> <p><i>Pupils should be able to double numbers up to 100 and use this to derive doubles for multiples of ten as well as decimal numbers. These facts can be adjusted to calculate near doubles.</i></p>	$160 + 170 = \text{double } 150 + 10 + 20$ $160 + 170 = \text{double } 160 + 10 \text{ or}$ $160 + 170 = \text{double } 170 - 10$ $2.5 + 2.6 = \text{double } 2.5 + 0.1$

Strategies & Guidance	CPA
<p>Partition both numbers and combine the parts</p> <p><i>method for numbers up to 10 000, using place value counters or Dienes to show conceptual understanding.</i></p> <p><i>If multiple regroupings are required, then pupils should consider using the column method.</i></p>	$7230 + 5310 = 12 000 + 500 + 40$ <p style="text-align: center;">$200 + 300 = 500$</p> <p>Pupils should know now that the parts can be added in any order.</p>
<p>Written column methods for addition</p> <p><i>In Year 5, pupils are expected to be able to use formal written methods to add whole numbers with more than four digits as well as working with numbers with up to three decimal places.</i></p> <p><i>Pupils should think about whether this is the most efficient method, considering if mental methods would be more effective.</i></p> <p><i>Continue to use concrete manipulatives alongside the formal method.</i></p> <p><i>When adding decimal numbers with a different number of</i></p>	<p>For this method start with the digit of least value because if regrouping happens it will affect the digits of greater value.</p> <p>$\begin{array}{r} 3 & 4 & 6 & 2 & 3 \\ + & 5 & 5 & 4 & 1 \\ \hline \end{array}$</p> <p>Combine the counters in each column and regroup as needed:</p> <p>$\begin{array}{r} 3 & 4 & 6 & 2 & 3 \\ + & 5 & 5 & 4 & 1 \\ \hline 4 & 0 & 1 & 6 & 4 \\ \hline 1 & 1 \end{array}$</p> <p>Decimal numbers:</p> <p>$\begin{array}{r} 3 & 4 & . & 2 & 5 \\ 1 & 5 & . & 4 \\ + & 6 & . & 3 & 6 & 2 \\ \hline 5 & 6 & . & 0 & 1 & 2 \\ \hline 1 & 1 & 1 \end{array}$</p>

Strategies & Guidance	CPA
<p>Written column methods for subtraction</p> <p><i>In Year 5, pupils are expected to be able to use formal written methods to subtract whole numbers with more than four digits as well as working with numbers with up to three decimal places.</i></p> <p><i>Pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping.</i></p> <p><i>In Year 3 and 4 they become more familiar with calculations that require 'regrouping to regroup'. Understanding must be secured through the considered use of manipulatives and images, combined with careful use of language.</i></p> <p><i>Pupils should think about if this is the most efficient method, considering whether mental strategies (such as counting on, using known number facts, compensation etc.) may be likelier to produce an accurate solution.</i></p>	<p>4 1 3 6 2 - 3 2 2 4 3 _____</p> <p>3 1 3 5 1 4 - 3 2 2 4 3 _____ 9 1 1 8</p> <p>The term regrouping should be the language used. You can use the terms 'exchange' with subtraction but it needs careful consideration.</p> <p>You can regroup 62 as 50 and 12 (5 tens and 12 ones) instead of 60 and 2 (6 tens and 12 ones).</p> <p>Or you can 'exchange' one of the tens for 10 ones resulting in 5 tens and 12 ones.</p> <p>If you have exchanged, then the number has been regrouped.</p>

Progression in calculations

Year 5 + Year 6

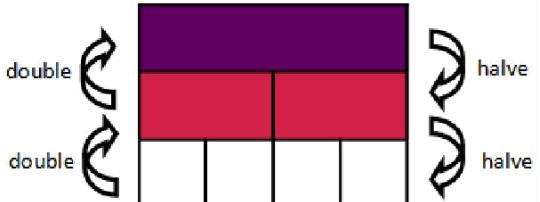
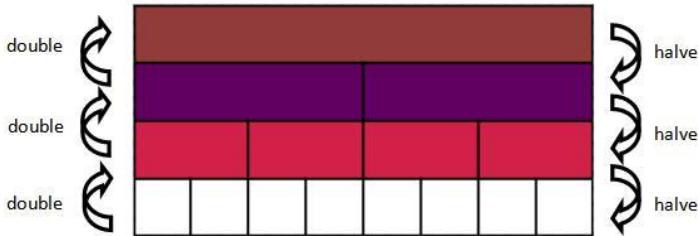
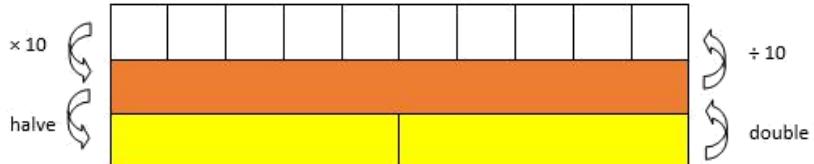
National Curriculum objectives linked to multiplication and division

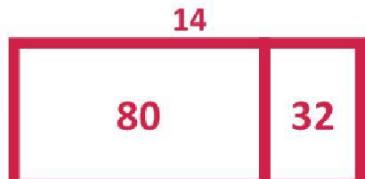
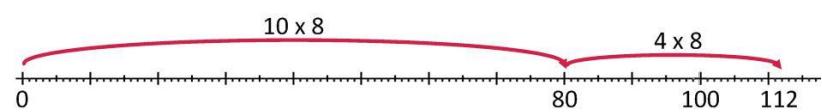
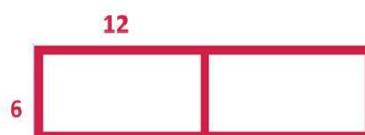
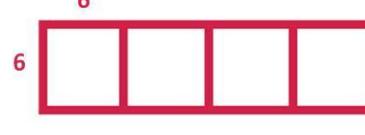
These objectives are explicitly covered through the strategies outlined in this document:

- multiply and divide whole numbers by 10, 100 and 1000
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places

The following objectives should be planned for lessons where new strategies are being introduced and developed:

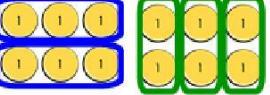
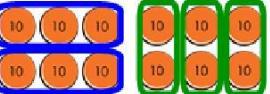
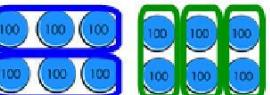
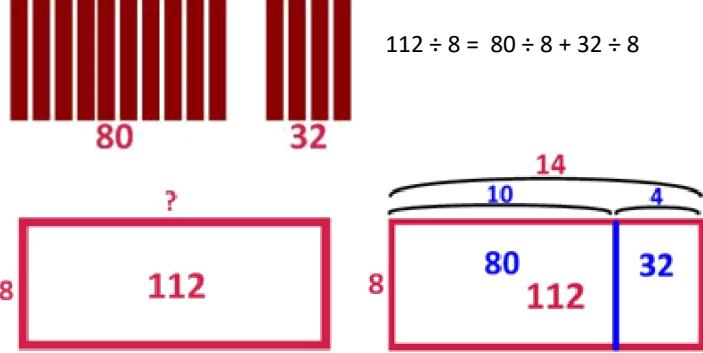
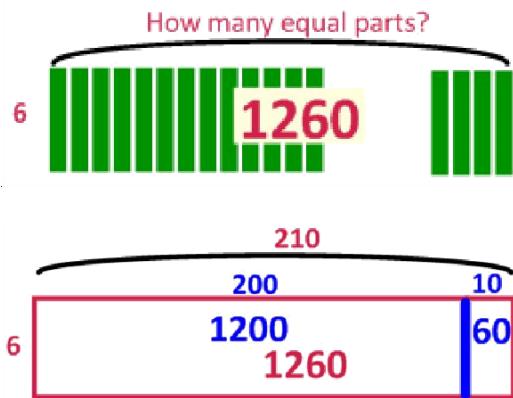
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.




Y5 and Y6 Multiplication





Strategies & Guidance	CPA
<p>Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000</p> <p><i>Avoid saying that you “add a zero” when multiplying by ten and instead use the language of place holder.</i></p> <p><i>Use place value counters and charts to visualise and then notice what happens to the digits.</i></p>	<p>When you multiply by ten, each part is ten times greater. The ones become tens, the tens become hundreds, etc.</p> <p>When multiplying whole numbers, a zero holds a place so that each digit has a value that is ten times greater.</p> $102.14 \times 10 = 1021.4$
	<p>When you divide by ten, each part is ten times smaller. The hundreds become tens and the tens become ones. Each digit is in a place that gives it a value that is ten times smaller.</p> <p>When dividing multiples of ten, a place holder is no longer needed so that each digit has a value that is ten times smaller. E.g. $210 \div 10 = 21$</p> $210.3 \div 10 = 21.03$

Strategies & Guidance	CPA
<p>Using known facts and place value to derive multiplication facts</p> <p><i>Emphasis is placed on understanding the relationship (10 times or 100 times greater) between a known number fact and one to be derived, allowing far larger 'fact families' to be derived from a single known number fact.</i></p> <p><i>Knowledge of commutativity is further extended and applied to find a range of related facts.</i></p> <p><i>Pupils should work with decimals with up to two decimal places.</i></p> <p><i>These derived facts should be used to estimate and check answers to calculations.</i></p>	

These are the multiplication facts pupils should be able to derive from a known fact






2 100 000	700 000 x 3	70 000 x 30	7000 x 300	700 x 3000	70 x 30 000	7 x 300 000
210 000	70 000 x 3	7000 x 30	700 x 300	70 x 3000	7 x 30 000	
21 000	7000 x 3	700 x 30	70 x 300	7 x 3000		
2100	700 x 3	70 x 30	7 x 300			
210	70 x 3	7 x 30				
21	= 7 x 3					
2.1	0.7 x 3	7 x 0.3				
0.21	0.07 x 3	0.7 x 0.3	7 x 0.03			
0.021	0.007 x 3	0.07 x 0.3	0.7 x 0.03	7 x 0.003		

Strategies & Guidance	CPA
<p>Doubling and halving</p> <p><i>Pupils should experience doubling and halving larger and smaller numbers as they expand their understanding of the number system.</i></p> <p><i>Doubling and halving can then be used in larger calculations.</i></p>	<p>CPA</p> <p>Multiply by 4 by doubling and doubling again</p> <p>e.g. $16 \times 4 = 32 \times 2 = 64$</p> <p>Divide by 4 by halving and halving again</p> <p>e.g. $104 \div 4 = 52 \div 2 = 26$</p> <p>Multiply by 8 by doubling three times</p> <p>e.g. $12 \times 8 = 24 \times 4 = 48 \times 2 = 96$</p> <p>Divide by 8 by halving three times</p> <p>e.g. $104 \div 8 = 52 \div 4 = 26 \div 2 = 13$</p> <p>Multiply by 5 by multiplying by 10 then halving,</p> <p>e.g. $18 \times 5 = 180 \div 2 = 90$.</p> <p>Divide by 5 by dividing by 10 and doubling,</p> <p>e.g. $460 \div 5 = \text{double } 46 = 92$</p>

Strategies & Guidance	CPA
Multiply by partitioning one number and multiplying each part Distributive law $a \times (b + c) = a \times b + a \times c$	$8 \times 14 = 8 \times 10 + 8 \times 4$ <p>Cuisenaire rods to build arrays</p>
<p>Build on pupils' understanding of arrays of counters to represent multiplication to see that area models can be a useful representation:</p>	<p>Represent with area model</p> <p>Jottings on a number line</p> <p>Bead string where each bead has a value of 8:</p>
<p>Using knowledge of factors</p> <p><i>In Year 5 pupils are expected to be able to identify factor pairs and this knowledge can be used to calculate.</i></p> <p><i>Pupils will be using the commutative and associative laws of multiplication.</i></p> <p>Commutative law</p> $a \times b = b \times a$ <p>Associative law</p> $a \times b \times c = (a \times b) \times c$ $= a \times (b \times c)$ <p><i>They should explore and compare the different options and choose the most efficient order to complete calculations.</i></p>	<p>Calculate 6×24 by using factor pairs of 24</p> <p>Two and twelve are factors of 24:</p> $6 \times 2 \times 12$ <p>Three and eight are factors of 24:</p> $6 \times 3 \times 8$ <p>Four and six are factors of 24:</p> $6 \times 4 \times 6$

Strategies & Guidance	CPA																																		
<p>Formal written method of short multiplication</p> <p><i>Conceptual understanding is supported by the use of place value counters, both during teacher demonstrations and during their own practice.</i></p> <p>—</p>	$ \begin{array}{r} 241 \\ \times 3 \\ \hline 723 \end{array} $ <table border="1" data-bbox="890 300 1263 624"> <thead> <tr> <th>Hundreds</th> <th>Tens</th> <th>Ones</th> </tr> </thead> <tbody> <tr> <td>100 100 100 100 100 100</td> <td>10 10</td> <td>1 1 1</td> </tr> </tbody> </table>	Hundreds	Tens	Ones	100 100 100 100 100 100	10 10	1 1 1																												
Hundreds	Tens	Ones																																	
100 100 100 100 100 100	10 10	1 1 1																																	
<p>Multiplying by a 2-digit number</p> <p>Formal written method of long multiplication</p> <p><i>In Year 6 pupils are extended from multiplication by a 1-digit number to multiplication by a 2-digit number.</i></p> <p><i>Extend the place value chart model used in Year 4, using an additional row on the place value chart.</i></p> <p><i>Extend understanding of the distributive law to develop conceptual understanding of the two rows of the formal written method.</i></p> <p><i>Dienes blocks can be used to construct area models to represent this.</i></p>	$ \begin{array}{r} 243 \\ \times 12 \\ \hline 486 \\ 2430 \end{array} $ <table border="1" data-bbox="580 835 1207 1253"> <thead> <tr> <th>Thousands</th> <th>Hundreds</th> <th>Tens</th> <th>Ones</th> </tr> </thead> <tbody> <tr> <td>1000 1000</td> <td>100 100 100 100</td> <td>10 10 10 10</td> <td>1 1 1</td> </tr> </tbody> </table> <p>243 x 2</p> <p>243 x 10</p> $ \begin{array}{r} 34 \\ \times 12 \\ \hline 68 \\ 340 \end{array} $ <p>12 x 34</p> <table border="1" data-bbox="580 1477 1207 1709"> <thead> <tr> <th></th> <th>1000</th> <th>1000</th> <th>1000</th> <th>100</th> <th>100</th> <th>100</th> <th>10</th> <th>10</th> <th>10</th> <th>10</th> <th>10</th> <th>10</th> </tr> </thead> <tbody> <tr> <td>x</td> <td>1000</td> <td>1000</td> <td>1000</td> <td>100</td> <td>100</td> <td>100</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> </tr> </tbody> </table> <p>10 x 34 = 340</p> <p>2 x 34 = 68</p>	Thousands	Hundreds	Tens	Ones	1000 1000	100 100 100 100	10 10 10 10	1 1 1		1000	1000	1000	100	100	100	10	10	10	10	10	10	x	1000	1000	1000	100	100	100	10	10	10	10	10	10
Thousands	Hundreds	Tens	Ones																																
1000 1000	100 100 100 100	10 10 10 10	1 1 1																																
	1000	1000	1000	100	100	100	10	10	10	10	10	10																							
x	1000	1000	1000	100	100	100	10	10	10	10	10	10																							

Y5 and Y6 Division

Strategies & Guidance	CPA
<p>Deriving facts from known facts</p> <p><i>Pupils use their growing knowledge of multiplication facts, place value and derived facts to multiply mentally.</i></p> <p><i>Understanding of the inverse relationship between multiplication and division allows corresponding division facts to be derived.</i></p>	$6 \div 2 = 3$ $6 \div 3 = 2$ $60 \div 2 = 30$ $60 \div 3 = 20$ $60 \div 30 = 2$ $60 \div 20 = 3$ $600 \div 2 = 300$ $600 \div 3 = 200$ $600 \div 300 = 2$ $600 \div 200 = 3$
<p>Using knowledge of multiples to divide</p> <p><i>Using an area model to partition the whole into multiples of the divisor (the number you are dividing by).</i></p>	 $112 \div 8 = 80 \div 8 + 32 \div 8$ $1260 \div 6 = 1200 \div 6 + 60 \div 6$ <p>How many equal parts?</p>

Strategies & Guidance	CPA
<p>Using knowledge of factors to divide</p> <p><i>Pupils explore this strategy when using repeated halving.</i></p> <p><i>$2 \times 2 = 4$ and so if you divide by 4 the same result can be achieved by dividing by two and then by two again.</i></p>	<p>24</p> <p>144</p> <p>$144 \div 24$</p> <p>12 12</p> <p>72 144</p> <p>$144 \div 2 \div 12$</p> <p>I know 2 and 12 are a factor pair of 24 and so I can divide by 2 and then by 12.</p>

Strategies & Guidance	CPA								
<p>Short division</p> <p>Dividing a 4-digit numbers by 1-digit numbers</p> <p><i>The thought process of the traditional algorithm is as follows:</i></p> <p><i>How many 4s in 8? 2</i> <i>How many 4s in 5? 1 with 1 remaining so regroup.</i> <i>How many 4s in 12? 3</i> <i>How many 4s in 8? 2</i></p> <p><i>Warning: If you simply apply place value knowledge to each step, the thinking goes wrong if you have to regroup.</i></p> <p><i>How many 4s in 8000? 2000</i> <i>How many 4s in 500? 100 with 1 remaining (illogical)</i> <i>The answer would be 125.</i></p> <p><i>Sharing the dividend builds conceptual understanding however doesn't scaffold the "thinking" of the algorithm.</i></p> <p><i>Using place value counters and finding groups of the divisor for each power of ten will build conceptual understanding of the short division algorithm.</i></p> <p><i>Area models are also useful representations, as seen with other strategies and exemplified for long division.</i></p> <p>—</p>	<p>$8528 \div 4$</p> <p>Sharing</p> <p>Thousands Hundreds Tens Ones</p> <p>8 thousands shared into 4 equal groups 5 hundreds shared into 4 equal groups Regroup 1 hundred for 10 tens 12 tens shared into 4 equal groups 8 ones shared into 4 equal groups.</p> <p>Grouping</p> <table border="1"> <thead> <tr> <th data-bbox="620 1185 779 1226">Thousands</th> <th data-bbox="779 1185 969 1226">Hundreds</th> <th data-bbox="969 1185 1160 1226">Tens</th> <th data-bbox="1160 1185 1382 1226">Ones</th> </tr> </thead> <tbody> <tr> <td data-bbox="620 1226 779 1428"> </td><td data-bbox="779 1226 969 1428"> </td><td data-bbox="969 1226 1160 1428"> </td><td data-bbox="1160 1226 1382 1428"> </td></tr> </tbody> </table> <p>How many groups of 4 thousands in 8 thousands? How many groups of 4 hundreds in 5 hundreds? Regroup 1 hundred for 10 tens. How many groups of 4 tens in 12 tens? How many groups of 4 ones in 8 ones?</p>	Thousands	Hundreds	Tens	Ones				
Thousands	Hundreds	Tens	Ones						

Strategies & Guidance	CPA
<p>Long division</p> <p>Dividing a 4-digit number by a 2-digit number</p> <p><i>Follow the language structures of the short division strategy. Instead of recording the regrouped amounts as small digits the numbers are written out below. This can be easier to work with when dividing by larger numbers.</i></p> <p><i>If dividing by a number outside of their known facts, pupils should start by recording some multiples of that number to scaffold.</i></p>	$ \begin{array}{r} 34 \\ 12 \overline{)408} \\ 36 \\ \hline 48 \\ 48 \\ \hline 0 \end{array} $ <p>$408 \div 12$</p> <p> $30 \times 12 = 360$ $4 \times 12 = 48$ </p>